Abstract
Phe-tRNA Phe from yeast containing 2-thiocytidine or 5-iodocytidine in position 75 of the polynucleotide chain or Phe-tRNA Phe in which both positions 74 and 75 were substituted by 5-iodocytidine were investigated in the poly U-dependent polyphenylalanine synthesis on ribosomes from rabbit reticulocytes. Phe-tRNA Phe-Cps2CpA was nearly as active as the native Phe-tRNA Phe-CpCpA in the overall process. Phe-tRNA Phe-Cpi 5CpA as well as Phe-tRNA Phe-i5Cpi 5CpA were considerably less active than the native species. Investigation of individual steps of protein biosynthesis with these modified substrates revealed that the donor activity of peptidyl-tRNAs which contain 5-iodocytidine in their 3'-terminus is strongly imparied suggesting exacting structural requirements for the interaction of the CpCpA end of tRNA with the ribosomal P-site.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baksht E., de Groot N. D. The enzymatic binding of aminoacyl-tRNA to reticulocyte ribosomes: the stimulatory effect of donor site bound peptidyl-tRNA. Mol Biol Rep. 1974 Dec;1(8):493–497. doi: 10.1007/BF00360677. [DOI] [PubMed] [Google Scholar]
- Baksht E., de Groot N., Sprinzl M., Cramer F. Properties of tRNA species modified in the 3'-terminal ribose moiety in an eukaryotic ribosomal system. Biochemistry. 1976 Aug 10;15(16):3639–3646. doi: 10.1021/bi00661a035. [DOI] [PubMed] [Google Scholar]
- Baksht E., de Groot N., Sprinzl M., Cramer F. The behaviour of phenylalanine transfer ribonucleic acid with 3'-terminal formycin in protein biosynthesis using a rabbit reticulocyte cell-free system. FEBS Lett. 1975 Jul 15;55(1):105–108. doi: 10.1016/0014-5793(75)80970-7. [DOI] [PubMed] [Google Scholar]
- Chinali G., Sprinzl M., Parmeggiani A., Cramer F. Participation in protein biosynthesis of transfer ribonucleic acids bearing altered 3'-terminal ribosyl residues. Biochemistry. 1974 Jul 16;13(15):3001–3010. doi: 10.1021/bi00712a001. [DOI] [PubMed] [Google Scholar]
- Deutscher M. P. Synthesis and functions of the -C-C-A terminus of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1973;13:51–92. doi: 10.1016/s0079-6603(08)60100-2. [DOI] [PubMed] [Google Scholar]
- Eckermann D. J., Greenwell P., Symons R. H. Peptide-bond formation on the ribosome. A comparison of the acceptor-substrate specificity of peptidyl transferase in bacterial and mammalian ribosomes using puromycin analogues. Eur J Biochem. 1974 Feb 1;41(3):547–554. doi: 10.1111/j.1432-1033.1974.tb03296.x. [DOI] [PubMed] [Google Scholar]
- Faerber P., Scheit K. H., Sommer H. A new polynucleotide complex poly(s 2 C)-poly(I). Eur J Biochem. 1972 May;27(1):109–115. doi: 10.1111/j.1432-1033.1972.tb01816.x. [DOI] [PubMed] [Google Scholar]
- Fraser T. H., Rich A. Synthesis and aminoacylation of 3'-amino-3'-deoxy transfer RNA and its activity in ribosomal protein synthesis. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2671–2675. doi: 10.1073/pnas.70.9.2671. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hecht S. M., Kozarich J. W., Schmidt F. J. Isomeric phenylalanyl-tRNAs. Position of the aminoacyl moiety during protein biosynthesis. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4317–4321. doi: 10.1073/pnas.71.11.4317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leder P., Bursztyn H. Initiation of protein synthesis II. A convenient assay for the ribosome-dependent synthesis of N-formyl-C14-methionylpuromycin. Biochem Biophys Res Commun. 1966 Oct 20;25(2):233–238. doi: 10.1016/0006-291x(66)90586-9. [DOI] [PubMed] [Google Scholar]
- Monro R. E., Cerná J., Marcker K. A. Ribosome-catalyzed peptidyl transfer: substrate specificity at the P-site. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1042–1049. doi: 10.1073/pnas.61.3.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
- Ofengand J., Chen C. M. Inactivation of T u factor-guanosine triphosphate recognition and ribosome-binding ability by terminal oxidation-reduction of yeast phenylalanine transfer ribonucleic acid. J Biol Chem. 1972 Apr 10;247(7):2049–2058. [PubMed] [Google Scholar]
- Rappoport S., Lapidot Y. The chemical preparation of acetylaminoacyl-tRNA. Methods Enzymol. 1974;29:685–688. doi: 10.1016/0076-6879(74)29060-8. [DOI] [PubMed] [Google Scholar]
- Sneden D., Miller D. L., Kim S. H., Rich A. Preliminary x-ray analysis of the crystalline complex between poypeptide chain elongation factor, Tu, and GDP. Nature. 1973 Feb 23;241(5391):530–531. doi: 10.1038/241530a0. [DOI] [PubMed] [Google Scholar]
- Sprinzl M., Cramer F. Accepting site for aminoacylation of tRNAphe from yeast. Nat New Biol. 1973 Sep 5;245(140):3–5. doi: 10.1038/newbio245003a0. [DOI] [PubMed] [Google Scholar]
- Sprinzl M., Scheit K. H., Cramer F. Preparation in vitro of a 2-thiocytidine-containing yeast tRNA Phe -A 73 -C 74 -S 2 C 75 -A 76 and its interaction wiith p-hydroxymercuribenzoate. Eur J Biochem. 1973 Apr;34(2):306–310. doi: 10.1111/j.1432-1033.1973.tb02759.x. [DOI] [PubMed] [Google Scholar]
- Sprinzl M., von der Haar F., Schlimme E., Sternbach H., Cramer F. Incorporation of 5-iodocytidine into yeast tRNAphe with tRNA nucleotidyl transferase in vitro. Eur J Biochem. 1972 Feb 15;25(2):262–266. doi: 10.1111/j.1432-1033.1972.tb01692.x. [DOI] [PubMed] [Google Scholar]
- Watanabe K., Oshima T., Nishimura S. CD spectra of 5-methyl-2-thiouridine in tRNA-Met-f from an extreme thermophile. Nucleic Acids Res. 1976 Jul;3(7):1703–1713. doi: 10.1093/nar/3.7.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
