Abstract
Cytosine residues in 32P-labeled E. coli tRNA Leu 1 were modified by treatment of the tRNA with the semicarbazide-bisulfite reagents [Hayatsu, H. (1976) Biochemistry 15, 2677-2682]. Analysis of the modification sites showed that only four cytidine residues, i.e. C35, C53, C85 and C86, reacted. They were identical with the cytidines of this tRNA accessible to methoxyamine [Chang, S. E. and Ish-Horowicz, D. (1974) J. Mol. Biol. 84, 375-388] and the accessibility was consistent with the conformational features recognized for tRNA in general. The rapidity and the simple nature of this modification demonstrate that the semicarbazide-bisulfite reaction is a useful tool in studying conformations of polynucleotides.
Full text
PDF









Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Batey I. L., Brown D. M. The selective iodination of yeast phenylalanine transfer RNA with 125-I. Mol Biol Rep. 1975 Mar;2(1):65–72. doi: 10.1007/BF00357299. [DOI] [PubMed] [Google Scholar]
- Cashmore A. R., Brown D. M., Smith J. D. Selective reaction of methoxyamine with cytosine bases in tyrosine transfer ribonucleic acid. J Mol Biol. 1971 Jul 28;59(2):359–373. doi: 10.1016/0022-2836(71)90056-8. [DOI] [PubMed] [Google Scholar]
- Chakraburtty K. Effect of sodium bisulfite modification on the arginine acceptance of E. coli tRNA Arg. Nucleic Acids Res. 1975 Oct;2(10):1793–1804. doi: 10.1093/nar/2.10.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chambers R. W., Aoyagi S., Furukawa Y., Zawadzka H., Bhanot O. S. Inactivation of valine acceptor ativity by a C-U missense change in the anticodon of yeast valine transfer ribonucleic acid. J Biol Chem. 1973 Aug 10;248(15):5549–5551. [PubMed] [Google Scholar]
- Chang S. E., Ish-Horowicz D. Selective modification of cytidine, uridine, guanosine and pseudouridine residues in Escherichia coli leucine transfer ribonucleic acid. J Mol Biol. 1974 Apr 15;84(3):375–388. doi: 10.1016/0022-2836(74)90446-x. [DOI] [PubMed] [Google Scholar]
- Chang S. E. Selective modification of cytidine and uridine residues in Escherichia coli formylmethionine transfer ribonucleic acid. J Mol Biol. 1973 Apr 15;75(3):533–547. doi: 10.1016/0022-2836(73)90459-2. [DOI] [PubMed] [Google Scholar]
- Dube S. K., Marcker K. A., Yudelevich A. The nucleotide sequence of a leucine transfer RNA from E. coli. FEBS Lett. 1970 Sep 6;9(3):168–170. doi: 10.1016/0014-5793(70)80345-3. [DOI] [PubMed] [Google Scholar]
- Goddard J. P., Schulman L. H. Conversion of exposed cytidine residues to uridine residues in Escherichia coli formylmethionine transfer ribonucleic acid. J Biol Chem. 1972 Jun 25;247(12):3864–3867. [PubMed] [Google Scholar]
- Hayatsu H. Bisulfite modification of nucleic acids and their constituents. Prog Nucleic Acid Res Mol Biol. 1976;16:75–124. doi: 10.1016/s0079-6603(08)60756-4. [DOI] [PubMed] [Google Scholar]
- Hayatsu H. Reaction of cytidine with semicarbazide in the presence of bisulfite. A rapid modification specific for single-stranded polynucleotide. Biochemistry. 1976 Jun 15;15(12):2677–2682. doi: 10.1021/bi00657a030. [DOI] [PubMed] [Google Scholar]
- Hayatsu H., Takeishi K. I., Ukita T. The modification of nucleosides and nucleotides. 3. A selective modification of cytidine with semicarbazide. Biochim Biophys Acta. 1966 Sep;123(3):445–457. doi: 10.1016/0005-2787(66)90213-9. [DOI] [PubMed] [Google Scholar]
- Ikemura T., Dahlberg J. E. Small ribonucleic acids of Escherichia coli. I. Characterization by polyacrylamide gel electrophoresis and fingerprint analysis. J Biol Chem. 1973 Jul 25;248(14):5024–5032. [PubMed] [Google Scholar]
- Jilyaeva T. I., Kisselev L. L. Exposed cytosine residues in the tRNA(Val)(1) from yeast. FEBS Lett. 1970 Oct 16;10(4):229–232. doi: 10.1016/0014-5793(70)80635-4. [DOI] [PubMed] [Google Scholar]
- Kućan Z., Freude K. A., Kućan I., Chambers R. W. Aminoacylation of bisulphite-modified yeast tyrosine transfer RNA. Nat New Biol. 1971 Aug 11;232(2):177–179. doi: 10.1038/newbio232177a0. [DOI] [PubMed] [Google Scholar]
- Lowdon M., Goddard J. P. The kinetics of bisulphite modification of reactive residues in E. coli tRNA2Phe. Nucleic Acids Res. 1976 Dec;3(12):3383–3396. doi: 10.1093/nar/3.12.3383. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Piper P. W., Clark B. F. The selective reaction of methoxyamine with cytidine residues in mammalian initiator transfer ribonucleic acid. Nucleic Acids Res. 1974 Jan;1(1):45–51. doi: 10.1093/nar/1.1.45. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rhodes D. Accessible and inaccessible bases in yeast phenylalanine transfer RNA as studied by chemical modification. J Mol Biol. 1975 May 25;94(3):449–460. doi: 10.1016/0022-2836(75)90214-4. [DOI] [PubMed] [Google Scholar]
- Rich A., RajBhandary U. L. Transfer RNA: molecular structure, sequence, and properties. Annu Rev Biochem. 1976;45:805–860. doi: 10.1146/annurev.bi.45.070176.004105. [DOI] [PubMed] [Google Scholar]
- Schulman L. H., Goddard J. P. Loss of methionine acceptor activity resulting from a base change in the anticodon of Escherichia coli formylmethionine transfer ribonucleic acid. J Biol Chem. 1973 Feb 25;248(4):1341–1345. [PubMed] [Google Scholar]
- Schulman L. H., Shapiro R., Law D. C., Louis J. B. A simplified method for study of RNA conformation--reaction of formylmethionine transfer RNA with [14C]methylamine-bisulfite. Nucleic Acids Res. 1974 Oct;1(10):1305–1316. doi: 10.1093/nar/1.10.1305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singhal R. P. Chemical probe of structure and function of transfer ribonucleic acids. Biochemistry. 1974 Jul 2;13(14):2924–2932. doi: 10.1021/bi00711a023. [DOI] [PubMed] [Google Scholar]