Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Jul;4(7):2321–2329. doi: 10.1093/nar/4.7.2321

Nucleoside 3'-phosphotriesters as key intermediates for the oligoribonucleotide synthesis. IV. New method for removal of 2,2,2-trichloroethyl group and 31P NMR as a new tool for analysis of deblocking of internucleotide phosphate protecting groups.

R W Adamiak, E Biala, Grześkowiak, R Kierzek, A Kraszewski, W T Markiewicz, J Stawiński, Wiewiórowski
PMCID: PMC342569  PMID: 909778

Abstract

Zinc/acetylacetone/pyridine treatment has been designed as a very efficient method for removal of 2,2,2,-trichloroethyl group from phosphoesters. Internucleotide and terminal 2,2,2-trichloroethylphosphotriesters were transformed to corresponding diesters quantitatively. Much less reactive 2,2,2-trichloroethylphosphodiesters produced monoesters with ca. 90% yield. 31P NMR spectroscopy has been proposed as a new tool for analysis of removal of internucleotide phosphate protecting groups-a crucial step in oligonucleotides synthesis via phosphotriester approach.

Full text

PDF
2321

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adamiak R. W., Barciszewska M. Z., Biala E., Grzéskowiak K., Kierzek R., Kraszewski A., Markiewicz W. T., Wiewiórowski M. Nucleoside-3'-phosphotriesters as key intermediates for the oligoribonucleotide synthesis. III. An improved preparation of nucleoside 3'-phosphotriesters, their 1H NMR characterization and new conditions for removal of 2-cyanoethyl group. Nucleic Acids Res. 1976 Dec;3(12):3397–3408. doi: 10.1093/nar/3.12.3397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Catlin J. C., Cramer F. Deoxy oligonucleotide synthesis via the triester method. J Org Chem. 1973 Jan 26;38(2):245–250. doi: 10.1021/jo00942a011. [DOI] [PubMed] [Google Scholar]
  3. Cook A. F. The use of beta,beta,beta-tribromoethyl chloroformate for the protection of nucleoside hydroxyl groups. J Org Chem. 1968 Sep;33(9):3589–3593. doi: 10.1021/jo01273a052. [DOI] [PubMed] [Google Scholar]
  4. Cozzone P. J., Jardetzky O. Phosphorus-31 Fourier transform nuclear magnetic resonance study of mononucleotides and dinucleotides. 1. Chemical shifts. Biochemistry. 1976 Nov 2;15(22):4853–4859. doi: 10.1021/bi00667a016. [DOI] [PubMed] [Google Scholar]
  5. Eckstein F., Rizk I. Synthesis of oligonucleotides by use of phosphoric triesters. Angew Chem Int Ed Engl. 1967 Aug;6(8):695–697. doi: 10.1002/anie.196706951. [DOI] [PubMed] [Google Scholar]
  6. Itakura K., Katagiri N., Bahl C. P., Wightman R. H., Narang S. A. Improved triester approach for the synthesis of pentadecathymidylic acid. J Am Chem Soc. 1975 Dec 10;97(25):7327–7332. doi: 10.1021/ja00858a020. [DOI] [PubMed] [Google Scholar]
  7. Letsinger R. L., Lunsford W. B. Synthesis of thymidine oligonucleotides by phosphite triester intermediates. J Am Chem Soc. 1976 Jun 9;98(12):3655–3661. doi: 10.1021/ja00428a045. [DOI] [PubMed] [Google Scholar]
  8. MANDEL M., WESTLEY J. W. NUCLEAR MAGNETIC RESONANCE OF PHOSPHORUS IN DEOXYTHYMIDINE POLYNUCLEOTIDES. Nature. 1964 Jul 18;203:301–302. doi: 10.1038/203301b0. [DOI] [PubMed] [Google Scholar]
  9. van Boom J. H., Burgers P. M., Haasnoot C. A. Synthesis of 3'-phosphates of diribonucleoside monophosphates via phosphotriester intermediates. Nucleic Acids Res. 1976 Oct;3(10):2731–2747. doi: 10.1093/nar/3.10.2731. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES