Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Jul;4(7):2421–2427. doi: 10.1093/nar/4.7.2421

A neutron investigation of yeast valyl-tRNA synthetase interaction with tRNAs.

R Giegé, B Jacrot, D Moras, J C Thierry, G Zaccai
PMCID: PMC342575  PMID: 333390

Abstract

A new way of studying RNA-protein complexes, using neutron small angle scattering in solution, is described and was applied in the case of the system, yeast valyl-tRNA synthetase, interacting with its cognate and non cognate yeast tRNAs. It was shown that, when limited amounts of tRNA (either cognate or non cognate) are added to valyl-tRNA synthetase, a complex consisting of two enzyme molecules and one tRNA molecule is first formed. It is subsequently dissociated to a one to one complex when more tRNA is present in the solution. The association curve shows a maximum for a molecular ratio, enzyme over tRNA, equal to 2.

Full text

PDF
2421

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bonnet J., Ebel J. P. Influence of various factors on the recognition specificity of tRNAs by yeast valyl-tRNA synthetase. Eur J Biochem. 1975 Oct 1;58(1):193–201. doi: 10.1111/j.1432-1033.1975.tb02364.x. [DOI] [PubMed] [Google Scholar]
  2. Dietrich A., Kern D., Bonnet J., Giegé R., Ebel J. P. Interpretation of tRNA-mischarging kinetics. Eur J Biochem. 1976 Nov 1;70(1):147–158. doi: 10.1111/j.1432-1033.1976.tb10965.x. [DOI] [PubMed] [Google Scholar]
  3. Irwin M. J., Nyborg J., Reid B. R., Blow D. M. The crystal structure of tyrosyl-transfer RNA synthetase at 2-7 A resolution. J Mol Biol. 1976 Aug 25;105(4):577–586. doi: 10.1016/0022-2836(76)90236-9. [DOI] [PubMed] [Google Scholar]
  4. Kern D., Giegé R., Robre-Saul S., Boulanger Y., Ebel J. P. Complete purification and studies on the structural and kinetic properties of two forms of yeast valyl-tRNA synthetase. Biochimie. 1975;57(10):1167–1176. doi: 10.1016/s0300-9084(76)80579-2. [DOI] [PubMed] [Google Scholar]
  5. Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
  6. Osterberg R. The determination of stability constants from small-angle x-ray scattering data and the analysis of pH-dependent macromolecular equilibria. J Mol Biol. 1975 Dec 15;99(3):394–400. doi: 10.1016/s0022-2836(75)80134-3. [DOI] [PubMed] [Google Scholar]
  7. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  8. Stout C. D., Mizuno H., Rubin J., Brennan T., Rao S. T., Sundaralingam M. Atomic coordinates and molecular conformation of yeast phenylalanyl tRNA. An independent investigation. Nucleic Acids Res. 1976 Apr;3(4):1111–1123. doi: 10.1093/nar/3.4.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Zelwer C., Risler J. L., Monteilhet C. A low-resolution model of crystalline methionyl-transfer RNA synthetase from Escherichia coli. J Mol Biol. 1976 Mar 25;102(1):93–101. doi: 10.1016/0022-2836(76)90075-9. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES