Abstract
The chemical synthesis of 5-alkyl-dUTP-s and their participation as substrates in poly[d(A-6)] primed polymerization reactions with dATP by E. coli DNA polymerase I enzyme has been described. In comparison with dTTP, at saturating substrate concentrations, the rate of hypochromic effect was found to be 17.3% higher for dUTP and was lower by 27.4% for 5-ethyl-dUTP, 29.5% for 5-n-propyl-dUTP, 31.4% for 5-n-butyl-dUTP and by 85.0% for 5-n-pentyl-dUTP. No hypochromic effect could be observed, however, with 5-iso-propyl-, 5-tert.butyl- and 5-n-hexyl-dUTP-s. Polydeoxynucleotides have also been isolated from the reaction mixture and some of their structural properties determined.
Full text
PDF![2767](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaf/342607/da11defcb9be/nar00481-0241.png)
![2768](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaf/342607/1b99adb68c75/nar00481-0242.png)
![2769](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaf/342607/82b9c36525e2/nar00481-0243.png)
![2770](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaf/342607/2189456cbd57/nar00481-0244.png)
![2771](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaf/342607/36946cb4c256/nar00481-0245.png)
![2772](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaf/342607/a33fa21e0c1a/nar00481-0246.png)
![2773](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaf/342607/af0d869f46ff/nar00481-0247.png)
![2774](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaf/342607/b9e1bf96d2d6/nar00481-0248.png)
![2775](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaf/342607/94650562cbd5/nar00481-0249.png)
![2776](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaf/342607/b32d4abf14d5/nar00481-0250.png)
![2777](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cfaf/342607/51b8b0c9d180/nar00481-0251.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. J. The estimation of phosphorus. Biochem J. 1940 Jun;34(6):858–865. doi: 10.1042/bj0340858. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Burd J. F., Wells R. D. Effect of incubation conditions on the nucleotide sequence of DNA products of unprimed DNA polymerase reactions. J Mol Biol. 1970 Nov 14;53(3):435–459. doi: 10.1016/0022-2836(70)90076-8. [DOI] [PubMed] [Google Scholar]
- Cheng Y. C., Domin B. A., Sharma R. A., Bobek M. Antiviral action and cellular toxicity of four thymidine analogues: 5-ethyl-,5-vinyl-, 5-propyl-, and 5-allyl-2'- deoxyuridine. Antimicrob Agents Chemother. 1976 Jul;10(1):119–122. doi: 10.1128/aac.10.1.119. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dale R. M., Livingston D. C., Ward D. C. The synthesis and enzymatic polymerization of nucleotides containing mercury: potential tools for nucleic acid sequencing and structural analysis. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2238–2242. doi: 10.1073/pnas.70.8.2238. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dale R. M., Ward D. C. Mercurated polynucleotides: new probes for hybridization and selective polymer fractionation. Biochemistry. 1975 Jun 3;14(11):2458–2469. doi: 10.1021/bi00682a028. [DOI] [PubMed] [Google Scholar]
- Dorman D. E., Roberts J. D. Nuclear magnetic resonance spectroscopy: 13C spectra of some common nucleotides. Proc Natl Acad Sci U S A. 1970 Jan;65(1):19–26. doi: 10.1073/pnas.65.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOX J. J., SHUGAR D. Spectrophotometric studies of nucleic acid derivatives and related compounds as a function of pH. II. Natural and synthetic pyrimidine nucleosides. Biochim Biophys Acta. 1952 Oct;9(4):369–384. doi: 10.1016/0006-3002(52)90181-9. [DOI] [PubMed] [Google Scholar]
- INMAN R. B., BALDWIN R. L. HELIX--RANDOM COIL TRANSITIONS IN DNA HOMOPOLYMER PAIRS. J Mol Biol. 1964 Apr;8:452–469. doi: 10.1016/s0022-2836(64)80003-6. [DOI] [PubMed] [Google Scholar]
- Kropinski A. M., Bose R. J., Warren R. A. 5-(4-Aminobutylaminomethyl)uracil, an unusual pyrimidine from the deoxyribonucleic acid of bacteriophage phiW-14. Biochemistry. 1973 Jan 2;12(1):151–157. doi: 10.1021/bi00725a025. [DOI] [PubMed] [Google Scholar]
- Marmur J., Brandon C., Neubort S., Ehrlich M., Mandel M., Konvicka J. Unique properties of nucleic acid from Bacillus subtilis phage SP-15. Nat New Biol. 1972 Sep 20;239(90):68–70. doi: 10.1038/newbio239068a0. [DOI] [PubMed] [Google Scholar]
- McClure W. R., Jovin T. M. The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I. J Biol Chem. 1975 Jun 10;250(11):4073–4080. [PubMed] [Google Scholar]
- Piechowska M., Shugar D. Replacement of 5-methyluracil (thymine) by 5-ethyluracil in bacterial DNA. Biochem Biophys Res Commun. 1965 Sep 22;20(6):768–773. doi: 10.1016/0006-291x(65)90084-7. [DOI] [PubMed] [Google Scholar]
- Rae P. M. 5-Hydroxymethyluracil in the DNA of a dinoflagellate. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1141–1145. doi: 10.1073/pnas.70.4.1141. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SCHACHMAN H. K., ADLER J., RADDING C. M., LEHMAN I. R., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. VII. Synthesis of a polymer of deoxyadenylate and deoxythymidylate. J Biol Chem. 1960 Nov;235:3242–3249. [PubMed] [Google Scholar]
- Swierkowska K. M., Jasińska J. K., Steffen J. A. 5-Ethyl-2'-deoxyuridine: evidence for incorporation into DNA and evaluation of biological properties in lymphocyte cultures grown under conditions of amethopterine-imposed thymidine deficiency. Biochem Pharmacol. 1973 Jan 1;22(1):85–93. doi: 10.1016/0006-2952(73)90257-8. [DOI] [PubMed] [Google Scholar]
- TAKAHASHI I., MARMUR J. Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis. Nature. 1963 Feb 23;197:794–795. doi: 10.1038/197794a0. [DOI] [PubMed] [Google Scholar]