Abstract
The nucleotide sequence of tRNAPhe from Bacillussubtilis W 23 has been determined using 32P labeled tRNA. This is the second B. subtilis tRNA so far reported. The nucleotide sequence was found to be pG-G-C-U-C-G-G-U-A-G-C-U-C-A-G-U-D-G-G-D-A-G-A-G-C-A-A-C-G-G-A-C-U-Gm-A-A- ms2i6A-A-ψ-C-C-G-U-G-U-m7G-U-C-G-G-C-G-G-T-ψ- C-G-A-U-U-C-C-G-U-C-C-C-G-A-G-C-C-A-C-C-AOH.
Full text
PDF








Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnold H. H., Ogilvie A. Unformylated initiator tRNA is not a signal for the stringent control of RNA synthesis. Biochem Biophys Res Commun. 1977 Jan 24;74(2):343–349. doi: 10.1016/0006-291x(77)90310-2. [DOI] [PubMed] [Google Scholar]
- Arnold H. H., Raettig R. Isoaccepting phenylalanine tRNAs from Bacillus subtilis as a function of growth conditions. Differences in the content of modified nucleosides. FEBS Lett. 1977 Feb 1;73(2):210–214. doi: 10.1016/0014-5793(77)80983-6. [DOI] [PubMed] [Google Scholar]
- Arnold H. H., Schmidt W., Raettig R., Sandig L., Domdey H., Kersten H. S-Adenosylmethionine and tetrahydrofolate-dependent methylation of tRNA in Bacillus subtilis. Incomplete methylations caused by trimethoprim, pactamycin, or chloramphenicol. Arch Biochem Biophys. 1976 Sep;176(1):12–20. doi: 10.1016/0003-9861(76)90135-1. [DOI] [PubMed] [Google Scholar]
- Barrell B. G., Sanger F. The sequence of phenylalanine tRNA from E. coli. FEBS Lett. 1969 Jun;3(4):275–278. doi: 10.1016/0014-5793(69)80157-2. [DOI] [PubMed] [Google Scholar]
- Dudock B., DiPeri C., Scileppi K., Reszelbach R. The yeast phenylalanyl-transfer RNA synthetase recognition site: the region adjacent to the dihydrouridine loop. Proc Natl Acad Sci U S A. 1971 Mar;68(3):681–684. doi: 10.1073/pnas.68.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fradin A., Gruhl H., Feldmann H. Mapping of yeast tRNAs by two-dimensional electrophoresis on polyacrylamide gels. FEBS Lett. 1975 Feb 1;50(2):185–189. doi: 10.1016/0014-5793(75)80485-6. [DOI] [PubMed] [Google Scholar]
- Guerrier-Takada C., Dirheimer G., Grosjean H., Keith G. The primary structure of tRNAPhe from Bacillus stearothermophilus. FEBS Lett. 1975 Dec 15;60(2):286–289. doi: 10.1016/0014-5793(75)80732-0. [DOI] [PubMed] [Google Scholar]
- Keith G., Roy A., Ebel J. P., Dirheimer G. The primary structure of tRNA trp from brewer's yeast. I. Complete digestion with pancreatic ribonuclease and T 1 ribonuclease. Biochimie. 1972;54(11):1405–1415. doi: 10.1016/s0300-9084(72)80082-8. [DOI] [PubMed] [Google Scholar]
- Kern D., Giegé R., Ebel J. P. Incorrect aminoacylatins catalysed by the phenylalanyl-and valyl-tRNA synthetases from yeast. Eur J Biochem. 1972 Nov 21;31(1):148–155. doi: 10.1111/j.1432-1033.1972.tb02513.x. [DOI] [PubMed] [Google Scholar]
- Nishimura S., Harada F., Narushima U., Seno T. Purification of methionine-, valine-, phenylalanine- and tyrosine-specific tRNA from Escherichia coli. Biochim Biophys Acta. 1967 Jun 20;142(1):133–148. doi: 10.1016/0005-2787(67)90522-9. [DOI] [PubMed] [Google Scholar]
- Raettig R., Schmidt W., Mahal G., Kersten H., Arnold H. H. Purification and characterization of tRNAMet-f, tRNAPhe and tRNATyr2 from Baccillus subtilis. Biochim Biophys Acta. 1976 Jun 18;435(2):109–118. doi: 10.1016/0005-2787(76)90241-0. [DOI] [PubMed] [Google Scholar]
- Yamada Y., Ishikura H. Nucleotide sequence of initiator tRNA from Bacillus subtilis. FEBS Lett. 1975 Jun 15;54(2):155–158. doi: 10.1016/0014-5793(75)80064-0. [DOI] [PubMed] [Google Scholar]