Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Aug;4(8):2821–2829. doi: 10.1093/nar/4.8.2821

The nucleotide sequence of phenylalanine tRNA from Bacillus subtilis

H-H Arnold 1, G Keith 2
PMCID: PMC342611  PMID: 410002

Abstract

The nucleotide sequence of tRNAPhe from Bacillussubtilis W 23 has been determined using 32P labeled tRNA. This is the second B. subtilis tRNA so far reported. The nucleotide sequence was found to be pG-G-C-U-C-G-G-U-A-G-C-U-C-A-G-U-D-G-G-D-A-G-A-G-C-A-A-C-G-G-A-C-U-Gm-A-A- ms2i6A-A-ψ-C-C-G-U-G-U-m7G-U-C-G-G-C-G-G-T-ψ- C-G-A-U-U-C-C-G-U-C-C-C-G-A-G-C-C-A-C-C-AOH.

Full text

PDF
2821

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnold H. H., Ogilvie A. Unformylated initiator tRNA is not a signal for the stringent control of RNA synthesis. Biochem Biophys Res Commun. 1977 Jan 24;74(2):343–349. doi: 10.1016/0006-291x(77)90310-2. [DOI] [PubMed] [Google Scholar]
  2. Arnold H. H., Raettig R. Isoaccepting phenylalanine tRNAs from Bacillus subtilis as a function of growth conditions. Differences in the content of modified nucleosides. FEBS Lett. 1977 Feb 1;73(2):210–214. doi: 10.1016/0014-5793(77)80983-6. [DOI] [PubMed] [Google Scholar]
  3. Arnold H. H., Schmidt W., Raettig R., Sandig L., Domdey H., Kersten H. S-Adenosylmethionine and tetrahydrofolate-dependent methylation of tRNA in Bacillus subtilis. Incomplete methylations caused by trimethoprim, pactamycin, or chloramphenicol. Arch Biochem Biophys. 1976 Sep;176(1):12–20. doi: 10.1016/0003-9861(76)90135-1. [DOI] [PubMed] [Google Scholar]
  4. Barrell B. G., Sanger F. The sequence of phenylalanine tRNA from E. coli. FEBS Lett. 1969 Jun;3(4):275–278. doi: 10.1016/0014-5793(69)80157-2. [DOI] [PubMed] [Google Scholar]
  5. Dudock B., DiPeri C., Scileppi K., Reszelbach R. The yeast phenylalanyl-transfer RNA synthetase recognition site: the region adjacent to the dihydrouridine loop. Proc Natl Acad Sci U S A. 1971 Mar;68(3):681–684. doi: 10.1073/pnas.68.3.681. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fradin A., Gruhl H., Feldmann H. Mapping of yeast tRNAs by two-dimensional electrophoresis on polyacrylamide gels. FEBS Lett. 1975 Feb 1;50(2):185–189. doi: 10.1016/0014-5793(75)80485-6. [DOI] [PubMed] [Google Scholar]
  7. Guerrier-Takada C., Dirheimer G., Grosjean H., Keith G. The primary structure of tRNAPhe from Bacillus stearothermophilus. FEBS Lett. 1975 Dec 15;60(2):286–289. doi: 10.1016/0014-5793(75)80732-0. [DOI] [PubMed] [Google Scholar]
  8. Keith G., Roy A., Ebel J. P., Dirheimer G. The primary structure of tRNA trp from brewer's yeast. I. Complete digestion with pancreatic ribonuclease and T 1 ribonuclease. Biochimie. 1972;54(11):1405–1415. doi: 10.1016/s0300-9084(72)80082-8. [DOI] [PubMed] [Google Scholar]
  9. Kern D., Giegé R., Ebel J. P. Incorrect aminoacylatins catalysed by the phenylalanyl-and valyl-tRNA synthetases from yeast. Eur J Biochem. 1972 Nov 21;31(1):148–155. doi: 10.1111/j.1432-1033.1972.tb02513.x. [DOI] [PubMed] [Google Scholar]
  10. Nishimura S., Harada F., Narushima U., Seno T. Purification of methionine-, valine-, phenylalanine- and tyrosine-specific tRNA from Escherichia coli. Biochim Biophys Acta. 1967 Jun 20;142(1):133–148. doi: 10.1016/0005-2787(67)90522-9. [DOI] [PubMed] [Google Scholar]
  11. Raettig R., Schmidt W., Mahal G., Kersten H., Arnold H. H. Purification and characterization of tRNAMet-f, tRNAPhe and tRNATyr2 from Baccillus subtilis. Biochim Biophys Acta. 1976 Jun 18;435(2):109–118. doi: 10.1016/0005-2787(76)90241-0. [DOI] [PubMed] [Google Scholar]
  12. Yamada Y., Ishikura H. Nucleotide sequence of initiator tRNA from Bacillus subtilis. FEBS Lett. 1975 Jun 15;54(2):155–158. doi: 10.1016/0014-5793(75)80064-0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES