Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Aug;4(8):2831–2841. doi: 10.1093/nar/4.8.2831

A comparison of transcriptional linkage of tRNA cistrons in yeast and E. coli by the ultraviolet light technique.

H Feldman
PMCID: PMC342612  PMID: 333396

Abstract

The ultraviolet light mapping technique was employed to determine the lengths of tRNA cistrons in yeast. The applicability of the method was first tested in the E. coli system, in which the mapping positions for some tRNA cistrons and the ribosomal 5S RNA genes as well as the existence of multimeric transcription units for tRNAs are known. Rates of the synthesis of the tRNAs and small rRNAs after irradiation with various doses of UV light were determined by pulse labeling and quantitation of the RNA species after twodimensional gel electrophoreses. The small ribosomal RNAs served for internal calibration in the estimtion of the target sizes. Our results suggest that--in contrast to the prokaryotic system--in yeast the majority of the tRNA genes are not linked into transcriptional units.

Full text

PDF
2831

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aarstad K., Oyen T. B. On the distribution of 5s RNA cistrons on the genome of Saccharomyces cerevisiae. FEBS Lett. 1975 Mar 1;51(1):227–231. doi: 10.1016/0014-5793(75)80893-3. [DOI] [PubMed] [Google Scholar]
  2. Altman S. Biosynthesis of transfer RNA in Escherichia coli. Cell. 1975 Jan;4(1):21–29. doi: 10.1016/0092-8674(75)90129-4. [DOI] [PubMed] [Google Scholar]
  3. Blatt B., Feldmann H. Characterization of precursors to tRNA in yeast. FEBS Lett. 1973 Dec 1;37(2):129–133. doi: 10.1016/0014-5793(73)80441-7. [DOI] [PubMed] [Google Scholar]
  4. Chen G. S., Siddiqui M. A. Biosynthesis of transfer RNA: isolation and characterization of precursors to transfer RNA in the posterior silkgland of Bombyx mori. J Mol Biol. 1975 Jul 25;96(1):153–170. doi: 10.1016/0022-2836(75)90188-6. [DOI] [PubMed] [Google Scholar]
  5. Clarkson S. G., Kurer V. Isolation and some properties of DNA coding for tRNA1met from Xenopus laevis. Cell. 1976 Jun;8(2):183–195. doi: 10.1016/0092-8674(76)90002-7. [DOI] [PubMed] [Google Scholar]
  6. Feldman H. Arangement of transfer-RNA -genes in yeast. Nucleic Acids Res. 1976 Sep;3(9):2379–2386. doi: 10.1093/nar/3.9.2379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fradin A., Gruhl H., Feldmann H. Mapping of yeast tRNAs by two-dimensional electrophoresis on polyacrylamide gels. FEBS Lett. 1975 Feb 1;50(2):185–189. doi: 10.1016/0014-5793(75)80485-6. [DOI] [PubMed] [Google Scholar]
  8. Hackett P. B., Sauerbier W. Radiological mapping of the ribosomal RNA transcription unit in E. coli. Nature. 1974 Oct 18;251(5476):639–641. doi: 10.1038/251639a0. [DOI] [PubMed] [Google Scholar]
  9. Hackett P. B., Sauerbier W. The transcriptional organization of the ribosomal RNA genes in mouse L cells. J Mol Biol. 1975 Jan 25;91(3):235–256. doi: 10.1016/0022-2836(75)90378-2. [DOI] [PubMed] [Google Scholar]
  10. Herrlich P., Rahmsdorf H. J., Pai S. H., Schweigher M. Translational control induced by bacteriophage T7. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1088–1092. doi: 10.1073/pnas.71.4.1088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hirsch-Kauffmann M., Schweiger M., Herrlich P., Ponta H., Rahmsdorf H. J., Pai S. H., Wittmann H. G. Transcriptional units for ribosomal proteins of Escherichia coli. Eur J Biochem. 1975 Apr 1;52(3):469–474. doi: 10.1111/j.1432-1033.1975.tb04015.x. [DOI] [PubMed] [Google Scholar]
  12. Ikemura T., Shimura Y., Sakano H., Ozeki H. Precursor molecules of Escherichia coli transfer RNAs accumulated in a temperature-sensitive mutant. J Mol Biol. 1975 Jul 25;96(1):69–86. doi: 10.1016/0022-2836(75)90182-5. [DOI] [PubMed] [Google Scholar]
  13. Ilgen C., Kirk L. L., Carbon J. Isolation and characterization of large transfer ribonucleic acid precursors from Escherichia coli. J Biol Chem. 1976 Feb 25;251(4):922–929. [PubMed] [Google Scholar]
  14. Koski R. A., Bothwell A. L., Altman S. Identification of a ribonuclease P-like activity from human KB cells. Cell. 1976 Sep;9(1):101–116. doi: 10.1016/0092-8674(76)90056-8. [DOI] [PubMed] [Google Scholar]
  15. Lund E., Dahlberg J. E., Lindahl L., Jaskunas S. R., Dennis P. P., Nomura M. Transfer RNA genes between 16S and 23S rRNA genes in rRNA transcription units of E. coli. Cell. 1976 Feb;7(2):165–177. doi: 10.1016/0092-8674(76)90016-7. [DOI] [PubMed] [Google Scholar]
  16. RITOSSA F. M., SPIEGELMAN S. LOCALIZATION OF DNA COMPLEMENTARY TO RIBOSOMAL RNA IN THE NUCLEOLUS ORGANIZER REGION OF DROSOPHILA MELANOGASTER. Proc Natl Acad Sci U S A. 1965 Apr;53:737–745. doi: 10.1073/pnas.53.4.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sauerbier W., Millette R. L., Hackett P. B., Jr The effects of ultraviolet irradiation on the transcription of T4 DNA. Biochim Biophys Acta. 1970;209(2):368–386. doi: 10.1016/0005-2787(70)90735-5. [DOI] [PubMed] [Google Scholar]
  18. Schweizer E., MacKechnie C., Halvorson H. O. The redundancy of ribosomal and transfer RNA genes in Saccharomyces cerevisiae. J Mol Biol. 1969 Mar 14;40(2):261–277. doi: 10.1016/0022-2836(69)90474-4. [DOI] [PubMed] [Google Scholar]
  19. Seidman J. G., Barrell B. G., McClain W. H. Five steps in the conversion of a large precursor RNA into bacteriophage proline and serine transfer RNAs. J Mol Biol. 1975 Dec 25;99(4):733–760. doi: 10.1016/s0022-2836(75)80182-3. [DOI] [PubMed] [Google Scholar]
  20. van den Bos R. C., Retèl J., Planta R. J. The size and the location of the ribosomal RNA segments in ribosomal precursor RNA of yeast. Biochim Biophys Acta. 1971 Mar 25;232(3):494–508. doi: 10.1016/0005-2787(71)90603-4. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES