Abstract
The Q* nucleosides isolated from rabbit liver tRNA are known to have sugars (mannose or galactose) linked to their cyclopentene diol moiety. A Q* nucleoside containing mannose (manQ) was synthesized by a cell-free system from rat liver, using purified E. coli tRNAAsp as an acceptor and GDP-mannose as a donor molecule. The novel mannosyltransferase catalyzing this reaction was purified from a particulate-free soluble enzyme fraction and found to be strictly specific for tRNAAsp. These results, together with the anomeric configuration of mannose in Q* nucleoside, indicate that no lipid intermediate is involved in the biosynthesis of Q* nucleoside.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Harada F., Nishimura S. Possible anticodon sequences of tRNA His , tRNA Asm , and tRNA Asp from Escherichia coli B. Universal presence of nucleoside Q in the first postion of the anticondons of these transfer ribonucleic acids. Biochemistry. 1972 Jan 18;11(2):301–308. doi: 10.1021/bi00752a024. [DOI] [PubMed] [Google Scholar]
- Herscovics A., Golovtchenko A. M., Warren C. D., Bugge B., Jeanloz R. W. Mannosyltransferase activity in calf pancreas microsomes. Formation of 14C-labeled lipid-linked oligosaccharides from GDP-D-[14C]mannose and pancreatic dolichyl beta-D-[14C]mannopyranosyl phosphate. J Biol Chem. 1977 Jan 10;252(1):224–234. [PubMed] [Google Scholar]
- Kasai H., Nakanishi K., Macfarlane R. D., Torgerson D. F., Ohashi Z., McCloskey J. A., Gross H. J., Nishimura S. Letter: The structure of Q* nucleoside isolated from rabbit liver transfer ribonucleic acid. J Am Chem Soc. 1976 Aug 4;98(16):5044–5046. doi: 10.1021/ja00432a071. [DOI] [PubMed] [Google Scholar]
- Kasai H., Oashi Z., Harada F., Nishimura S., Oppenheimer N. J., Crain P. F., Liehr J. G., von Minden D. L., McCloskey J. A. Structure of the modified nucleoside Q isolated from Escherichia coli transfer ribonucleic acid. 7-(4,5-cis-Dihydroxy-1-cyclopenten-3-ylaminomethyl)-7-deazaguanosine. Biochemistry. 1975 Sep 23;14(19):4198–4208. doi: 10.1021/bi00690a008. [DOI] [PubMed] [Google Scholar]
- Lennarz W. J. Lipid linked sugars in glycoprotein synthesis. Science. 1975 Jun 6;188(4192):986–991. doi: 10.1126/science.167438. [DOI] [PubMed] [Google Scholar]
- Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
- Okada N., Harada F., Nishimura S. Specific replacement of Q base in the anticodon of tRNA by guanine catalyzed by a cell-free extract of rabbit reticulocytes. Nucleic Acids Res. 1976 Oct;3(10):2593–2603. doi: 10.1093/nar/3.10.2593. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okada N., Shindo-Okada N., Nishimura S. Isolation of mammalian tRNAAsp and tRNATyr by lectin-Sepharose affinity column chromatography. Nucleic Acids Res. 1977 Feb;4(2):415–423. doi: 10.1093/nar/4.2.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosso G. C., De Luca L., Warren C. D., Wolf G. Enzymatic synthesis of mannosyl retinyl phosphate from retinyl phosphate and guanosine diphosphate mannose. J Lipid Res. 1975 May;16(3):235–243. [PubMed] [Google Scholar]