Abstract
A method for large scale isolation of a native deoxyribonucleohistone complex from yeast is described. Crude chromatin, obtained after disrupting yeast cells at low ionic strength, contains a large amount of lipids, partially due to contaminating membranes. Most of them are removed by a Triton X-100 treatment, followed by step-gradient centrifugation. About 90% of the pellet may be solubilized by mild procedures, the composition of the soluble material being: histone/DNA = 1.0;nonhistone proteins/DNA = 0.55; RNA/DNA = 0.18. Histones can be obtained with high purity. Micrococcal nuclease digests DNA to yield a series of oligomeric fragments, with an average repeat length of about 160 base pairs. Circular dichroism spectra show that (theta) 270 is reduced by about 30% when compared to pure DNA and that chromosomal proteins are not denatured. These results indicate that the components of the complex conserve the native state.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Brandt W. F., Von Holt C. The occurrence of histone H3 and H4 in yeast. FEBS Lett. 1976 Jun 15;65(3):386–390. doi: 10.1016/0014-5793(76)80153-6. [DOI] [PubMed] [Google Scholar]
- Britten R. J., Graham D. E., Neufeld B. R. Analysis of repeating DNA sequences by reassociation. Methods Enzymol. 1974;29:363–418. doi: 10.1016/0076-6879(74)29033-5. [DOI] [PubMed] [Google Scholar]
- Chen Y. H., Yang J. T. A new approach to the calculation of secondary structures of globular proteins by optical rotatory dispersion and circular dichroism. Biochem Biophys Res Commun. 1971 Sep 17;44(6):1285–1291. doi: 10.1016/s0006-291x(71)80225-5. [DOI] [PubMed] [Google Scholar]
- Fazal M., Cole R. D. Anomalies encountered in the classification of histones. An example using wheat germ. J Biol Chem. 1977 Jun 25;252(12):4068–4072. [PubMed] [Google Scholar]
- Franco L., Johns E. W., Navlet J. M. Histones from baker's yeast. Isolation and fractionation. Eur J Biochem. 1974 Jun 1;45(1):83–89. doi: 10.1111/j.1432-1033.1974.tb03532.x. [DOI] [PubMed] [Google Scholar]
- Harlow R., Wells J. R. Preparation of membrane-free chromatin bodies from avian erythroid cells and analysis of chromatin acidic proteins. Biochemistry. 1975 Jun 17;14(12):2665–2674. doi: 10.1021/bi00683a600. [DOI] [PubMed] [Google Scholar]
- Hewish D. R., Burgoyne L. A. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun. 1973 May 15;52(2):504–510. doi: 10.1016/0006-291x(73)90740-7. [DOI] [PubMed] [Google Scholar]
- Hill R. J., Poccia D. L., Doty P. Towards a total macromolecular analysis of sea urchin embryo chromatin. J Mol Biol. 1971 Oct 28;61(2):445–462. doi: 10.1016/0022-2836(71)90392-5. [DOI] [PubMed] [Google Scholar]
- Hjelm R. P., Jr, Huang R. C. The conformation of proteins in chromatin. A circular dichroism study below 250 nm. Biochemistry. 1975 Jun 17;14(12):2766–2774. doi: 10.1021/bi00683a033. [DOI] [PubMed] [Google Scholar]
- Hjelm R. P., Jr, Huang R. C. The contribution of RNA and non-histone proteins to the circular dichroism spectrum of chromatin. Biochemistry. 1975 Apr 22;14(8):1682–1688. doi: 10.1021/bi00679a021. [DOI] [PubMed] [Google Scholar]
- Kornberg R. D., Thomas J. O. Chromatin structure; oligomers of the histones. Science. 1974 May 24;184(4139):865–868. doi: 10.1126/science.184.4139.865. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lohr D., Kovacic R. T., Van Holde K. E. Quantitative analysis of the digestion of yeast chromatin by staphylococcal nuclease. Biochemistry. 1977 Feb 8;16(3):463–471. doi: 10.1021/bi00622a020. [DOI] [PubMed] [Google Scholar]
- Lohr D., Van Holde K. E. Yeast chromatin subunit structure. Science. 1975 Apr 11;188(4184):165–166. doi: 10.1126/science.1090006. [DOI] [PubMed] [Google Scholar]
- Municio A. M., Odriozola J. M., Piñeiro A., Ribera A. In vitro fatty acid and lipid biosynthesis during development of insects. Biochim Biophys Acta. 1971 Nov 5;248(2):212–225. doi: 10.1016/0005-2760(71)90009-9. [DOI] [PubMed] [Google Scholar]
- Nelson D. A., Beltz W. R., Rill R. L. Chromatin subunits from baker's yeast: isolation and partial characterization. Proc Natl Acad Sci U S A. 1977 Apr;74(4):1343–1347. doi: 10.1073/pnas.74.4.1343. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noll M. Internal structure of the chromatin subunit. Nucleic Acids Res. 1974 Nov;1(11):1573–1578. doi: 10.1093/nar/1.11.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Noll M. Subunit structure of chromatin. Nature. 1974 Sep 20;251(5472):249–251. doi: 10.1038/251249a0. [DOI] [PubMed] [Google Scholar]
- Noll M., Thomas J. O., Kornberg R. D. Preparation of native chromatin and damage caused by shearing. Science. 1975 Mar 28;187(4182):1203–1206. doi: 10.1126/science.187.4182.1203. [DOI] [PubMed] [Google Scholar]
- Olins A. L., Olins D. E. Spheroid chromatin units (v bodies). Science. 1974 Jan 25;183(4122):330–332. doi: 10.1126/science.183.4122.330. [DOI] [PubMed] [Google Scholar]
- Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
- Shaw B. R., Corden J. L., Sahasrabuddhe C. G., Van Holde K. E. Chromatographic separation of chromatin subunits. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1193–1198. doi: 10.1016/s0006-291x(74)80410-9. [DOI] [PubMed] [Google Scholar]
- Spiker S., Mardian J. K., Isenberg I. Chomosomal HMG proteins occur in three eukaryotic kingdoms. Biochem Biophys Res Commun. 1978 May 15;82(1):129–135. doi: 10.1016/0006-291x(78)90586-7. [DOI] [PubMed] [Google Scholar]
- Tata J. R., Baker B. Sub-nuclear fractionation. I. Procedure and characterization of fractions. Exp Cell Res. 1974 Jan;83(1):111–124. doi: 10.1016/0014-4827(74)90694-6. [DOI] [PubMed] [Google Scholar]
- Thomas J. O., Furber V. Yeast chromatin structure. FEBS Lett. 1976 Jul 15;66(2):274–280. doi: 10.1016/0014-5793(76)80521-2. [DOI] [PubMed] [Google Scholar]
- Thomas J. O., Kornberg R. D. An octamer of histones in chromatin and free in solution. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2626–2630. doi: 10.1073/pnas.72.7.2626. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tonino G. J., Rozijn T. H. On the occurrence of histones in yeast. Biochim Biophys Acta. 1966 Aug 24;124(2):427–429. doi: 10.1016/0304-4165(66)90215-7. [DOI] [PubMed] [Google Scholar]
- WEBB J. M., LEVY H. B. New developments in the chemical determination of nucleic acids. Methods Biochem Anal. 1958;6:1–30. doi: 10.1002/9780470110225.ch1. [DOI] [PubMed] [Google Scholar]
- Wintersberger U., Smith P., Letnansky K. Yeast chromatin. Preparation from isolated nuclei, histone composition and transcription capacity. Eur J Biochem. 1973 Feb 15;33(1):123–130. doi: 10.1111/j.1432-1033.1973.tb02663.x. [DOI] [PubMed] [Google Scholar]
- Woodhead L., Johns E. W. The isolation of nucleosomes from saline-washed chromatin. FEBS Lett. 1976 Feb 15;62(2):115–117. doi: 10.1016/0014-5793(76)80031-2. [DOI] [PubMed] [Google Scholar]
- van der Vliet P. C., Tonino G. J., Rozijn T. H. Studies on the yeast nucleus. 3. Properties of a deoxyribonucleoprotein complex derived from yeast. Biochim Biophys Acta. 1969 Dec 16;195(2):473–483. [PubMed] [Google Scholar]
