Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Oct;5(10):3945–3957. doi: 10.1093/nar/5.10.3945

DNA polymerase alpha and beta in the California urchin.

F M Racine, P W Morris
PMCID: PMC342721  PMID: 569291

Abstract

DNA polymerase alpha and beta were identified in the urchin, Strongylocentrotus purpuratus. The DNA polymerase beta sedimented at 3.4 S, constituted 5% of total DNA polymerase activity, and was resistant to N-ethylmaleimide and high ionic strength. The polymerase alpha sedimented at 6--8 S, was inhibited by N-ethylmalemide or 0.1 M (NH4)2SO4, and was dependent upon glycerol for preservation of activity. Both the polymerases alpha and beta were nuclear associated in embryos. The DNA polymerase alpha was markedly heterogeneous on DEAE-Sephadex ion exchange and showed three modal polymerase species. These polymerase alpha species were indistinguishable by template activity assays but the DNA polymerase associated ribonucleotidyl transferase (Biochemistry 75 : 3106-3113, 1976) was found predominantly with only one of the DNA polymerase alpha species.

Full text

PDF
3945

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APOSHIAN H. V., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. IX. The polymerase formed after T2 bacteriophage infection of Escherichia coli: a new enzyme. J Biol Chem. 1962 Feb;237:519–525. [PubMed] [Google Scholar]
  2. Bolden A., Noy G. P., Weissbach A. DNA polymerase of mitochondria is a gamma-polymerase. J Biol Chem. 1977 May 25;252(10):3351–3356. [PubMed] [Google Scholar]
  3. Brakel C. L., Blumenthal A. B. Replication of poly dA and poly rA by a drosophila DNA polymerase. Nucleic Acids Res. 1978 Jul;5(7):2565–2575. doi: 10.1093/nar/5.7.2565. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bull P., Zaldivar J., Venegas A., Martial J., Valenzuela P. Inactivation of E. coli RNA polymerase by pyridoxal 5'-phosphate: identificationof a low pKa lysine as the modified residue. Biochem Biophys Res Commun. 1975 Jun 16;64(4):1152–1159. doi: 10.1016/0006-291x(75)90814-1. [DOI] [PubMed] [Google Scholar]
  5. Chang L. M., Bollum F. J. Low molecular weight deoxyribonucleic acid polymerase from rabbit bone marrow. Biochemistry. 1972 Mar 28;11(7):1264–1272. doi: 10.1021/bi00757a023. [DOI] [PubMed] [Google Scholar]
  6. Chang L. M., Bollum F. J. Low molecular weight deoxyribonucleic acid polymerase from rabbit bone marrow. Biochemistry. 1972 Mar 28;11(7):1264–1272. doi: 10.1021/bi00757a023. [DOI] [PubMed] [Google Scholar]
  7. Chang L. M. Phylogeny of DNA polymerase-beta. Science. 1976 Mar 19;191(4232):1183–1185. doi: 10.1126/science.769158. [DOI] [PubMed] [Google Scholar]
  8. De Petrocellis B., Parisi E., Filosa S., Capasso A. Separation and partial characterization of DNA polymerases in sea urchin Paracentrotus lividus eggs. Biochem Biophys Res Commun. 1976 Feb 9;68(3):954–960. doi: 10.1016/0006-291x(76)91238-9. [DOI] [PubMed] [Google Scholar]
  9. Fansler B., Loeb L. A. Sea urchin nuclear DNA polymerase. II. Changing localization during early development. Exp Cell Res. 1969 Oct;57(2):305–310. doi: 10.1016/0014-4827(69)90154-2. [DOI] [PubMed] [Google Scholar]
  10. Fisher P. A., Korn D. DNA polymerase-alpha. Purification and structural characterization of the near homogeneous enzyme from human KB cells. J Biol Chem. 1977 Sep 25;252(18):6528–6535. [PubMed] [Google Scholar]
  11. HINEGARDNER R. T., RAO B., FELDMAN D. E. THE DNA SYNTHETIC PERIOD DURING EARLY DEVELOPMENT OF THE SEA URCHIN EGG. Exp Cell Res. 1964 Oct;36:53–61. doi: 10.1016/0014-4827(64)90159-4. [DOI] [PubMed] [Google Scholar]
  12. Hachmann H. J., Lezius A. G. High-molecular-weight DNA polymerases from mouse myeloma. Purification and properties of three enzymes. Eur J Biochem. 1975 Jan 2;50(2):357–366. doi: 10.1111/j.1432-1033.1975.tb09811.x. [DOI] [PubMed] [Google Scholar]
  13. Holmer A. M., Hesslewood I. P., Johnston I. R. The occurrence of multiple activities in the high-molecular-weight DNA polymerase fraction of mammalian tissues. A preliminary study of some of their properties. Eur J Biochem. 1974 Apr 16;43(3):487–499. doi: 10.1111/j.1432-1033.1974.tb03436.x. [DOI] [PubMed] [Google Scholar]
  14. Holmes A. M., Johnston I. R. DNA polymerases of eukaryotes. FEBS Lett. 1975 Dec 15;60(2):233–243. doi: 10.1016/0014-5793(75)80721-6. [DOI] [PubMed] [Google Scholar]
  15. Kirkegaard L. H. Gradient sievorptive chromatography. A focusing system for the separation of cellular components. Biochemistry. 1973 Sep 11;12(19):3627–3632. doi: 10.1021/bi00743a009. [DOI] [PubMed] [Google Scholar]
  16. Loeb L. A., Fansler B., Williams R., Mazia D. Sea urchin nuclear DNA polymerase. I. Localization in nuclei during rapid DNA synthesis. Exp Cell Res. 1969 Oct;57(2):298–304. doi: 10.1016/0014-4827(69)90153-0. [DOI] [PubMed] [Google Scholar]
  17. Loeb L. A. Purification and properties of deoxyribonucleic acid polymerase from nuclei of sea urchin embryos. J Biol Chem. 1969 Apr 10;244(7):1672–1681. [PubMed] [Google Scholar]
  18. Martial J., Zaldivar J., Bull P., Venegas A., Valenzuela P. Inactivation of rat liver RNA polymerases I and II and yeast RNA polymerase I by pyrodixal 5'-phosphate. Evidence for the participation of lysyl residues at the active site. Biochemistry. 1975 Nov 4;14(22):4907–4911. doi: 10.1021/bi00693a020. [DOI] [PubMed] [Google Scholar]
  19. Matsukage A., Bohn E. W., Wilson S. H. Multiple forms of DNA polymerase in mouse myeloma. Proc Natl Acad Sci U S A. 1974 Feb;71(2):578–582. doi: 10.1073/pnas.71.2.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mazia D. Chromosome cycles turned on in unfertilized sea urchin eggs exposed to NH4OH. Proc Natl Acad Sci U S A. 1974 Mar;71(3):690–693. doi: 10.1073/pnas.71.3.690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Morris P. W., Rutter W. J. Nucleic acid polymerizing enzymes in developing Strongylocentrotus franciscanus embryos. Biochemistry. 1976 Jul 13;15(14):3106–3113. doi: 10.1021/bi00659a026. [DOI] [PubMed] [Google Scholar]
  22. Roeder R. G., Rutter W. J. Multiple ribonucleic acid polymerases and ribonucleic acid synthesis during sea urchin development. Biochemistry. 1970 Jun 9;9(12):2543–2553. doi: 10.1021/bi00814a023. [DOI] [PubMed] [Google Scholar]
  23. Vallee B. L., Hoch F. L. ZINC, A COMPONENT OF YEAST ALCOHOL DEHYDROGENASE. Proc Natl Acad Sci U S A. 1955 Jun 15;41(6):327–338. doi: 10.1073/pnas.41.6.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Venton D. L., Chan C. K. Inhibition of nucleotidyl transferase enzymes by metal ions in combination with 5-amino-1-formylisoquinoline thiosemicarbazone. Biochem Biophys Res Commun. 1977 Sep 23;78(2):547–553. doi: 10.1016/0006-291x(77)90213-3. [DOI] [PubMed] [Google Scholar]
  25. Weissbach A. Vertebrate DNA polymerases. Cell. 1975 Jun;5(2):101–108. doi: 10.1016/0092-8674(75)90017-3. [DOI] [PubMed] [Google Scholar]
  26. YONEDA M., BOLLUM F. J. DEOXYNUCLEOTIDE-POLYMERIZING ENZYMES OF CALF THYMUS GLAND. I. LARGE SCALE PURIFICATION OF TERMINAL AND REPLICATIVE DEOXYNUCLEOTIDYL TRANSFERASES. J Biol Chem. 1965 Aug;240:3385–3391. [PubMed] [Google Scholar]
  27. Young C. W., Hendler F. J., Karnofsky D. A. Synthesis of protein for DNA replication and cleavage events in the sand dollar embryo. Exp Cell Res. 1969 Nov;58(1):15–26. doi: 10.1016/0014-4827(69)90112-8. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES