Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Nov;5(11):3993–4006. doi: 10.1093/nar/5.11.3993

Transcriptional properties of nucleoli isolated from Tetrahymena.

E Gocke, J C Leer, O F Nielsen, O Westergaard
PMCID: PMC342729  PMID: 724506

Abstract

Nucleoli can be isolated from Tetrahymena in a yield of 30-60%. The isolated nucleoli contain rDNA (at least 90% pure) and have a protein to DNA ratio of 30:1. The endogenous RNA-polymerase activity of the r-chromatin has the following properties: (i) The in vitro transcript has a maximal size identical to the in vivo 35S rRNA precursor, demonstrating correct termination on the gene, (ii) 79% of the in vitro transcript is complementary to cDNA of 17S and 25S rRNA which is close to the theoretical maximum for the 35S rRNA precursor, (iii) the elongation rate of the endogenous RNA-polymerase molecules is 9-12 nucleotides/sec, (iv) an average of 4-16 active RNA polymerases are associated with each rDNA molecule depending upon the preparation.

Full text

PDF
3993

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bachellerie J. P., Nicoloso M., Zalta J. P. Nucleolar chromatin in Chinese hamster ovary cells. Topographical distribution of ribosomal DNA sequences and isolation of ribosomal transcription complexes. Eur J Biochem. 1977 Sep 15;79(1):23–32. doi: 10.1111/j.1432-1033.1977.tb11779.x. [DOI] [PubMed] [Google Scholar]
  3. Ballal N. R., Choi Y. C., Mouche R., Busche H. Fidelity of synthesis of preribosomal RNA in isolated nucleoli and nucleolar chromatin. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2446–2450. doi: 10.1073/pnas.74.6.2446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bombik B. M., Huang C. H., Baserga R. Isolation of transcriptionally active chromatin from mammalian nucleoli. Proc Natl Acad Sci U S A. 1977 Jan;74(1):69–73. doi: 10.1073/pnas.74.1.69. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Brooks T. L., Green M. H. The sv40 transcription complex. I. Effect of viral chromatin proteins on endogenous RNA polymerase activity. Nucleic Acids Res. 1977 Dec;4(12):4261–4277. doi: 10.1093/nar/4.12.4261. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coupar B. E., Chesterton C. J. The mechanism by which heparin stimulates transcription in isolated rat liver nuclei. Polyribonucleotide elongation rates and the number of transcribing RNA polymerase molecules present. Eur J Biochem. 1977 Oct 3;79(2):525–533. doi: 10.1111/j.1432-1033.1977.tb11837.x. [DOI] [PubMed] [Google Scholar]
  7. Cox R. F. Quantitation of elongating form A and B RNA polymerases in chick oviduct nuclei and effects of estradiol. Cell. 1976 Mar;7(3):455–465. doi: 10.1016/0092-8674(76)90176-8. [DOI] [PubMed] [Google Scholar]
  8. Davies K. E., Walker I. O. Control of RNA transcription in nuclei and nucleoli of Physarum polycephalum. FEBS Lett. 1978 Feb 15;86(2):303–306. doi: 10.1016/0014-5793(78)80585-7. [DOI] [PubMed] [Google Scholar]
  9. Dudov K. P., Dabeva M. D., Hadjiolov A. A. Simple agar--urea-gel electrophoretic fractionation of high molecular weight ribonucleic acids. Anal Biochem. 1976 Nov;76(50):250–258. doi: 10.1016/0003-2697(76)90283-9. [DOI] [PubMed] [Google Scholar]
  10. Eckert W. A., Kaffenberger W., Krohne G., Franke W. W. Introduction of hidden breaks during rRNA maturation and ageing in Tetrahymena pyriformis. Eur J Biochem. 1978 Jul 3;87(3):607–616. doi: 10.1111/j.1432-1033.1978.tb12413.x. [DOI] [PubMed] [Google Scholar]
  11. Engberg J., Andersson P., Leick V., Collins J. Free ribosomal DNA molecules from Tetrahymena pyriformis GL are giant palindromes. J Mol Biol. 1976 Jun 25;104(2):455–470. doi: 10.1016/0022-2836(76)90281-3. [DOI] [PubMed] [Google Scholar]
  12. Engberg J., Nilsson J. R., Pearlman R. E., Leick V. Induction of nucleolar and mitochondrial DNA replication in Tetrahymena pyriformis. Proc Natl Acad Sci U S A. 1974 Mar;71(3):894–898. doi: 10.1073/pnas.71.3.894. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Gall J. G. Free ribosomal RNA genes in the macronucleus of Tetrahymena. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3078–3081. doi: 10.1073/pnas.71.8.3078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Gariglio P., Mousset S. Isolation and partial characterization of a nuclear RNA polymerase - SV40 DNA complex. FEBS Lett. 1975 Aug 1;56(1):149–155. doi: 10.1016/0014-5793(75)80130-x. [DOI] [PubMed] [Google Scholar]
  15. Green M. H., Brooks T. L. The sv40 transcription complex. II. Non-dissociation of protein from SV40 chromatin during transcription. Nucleic Acids Res. 1977 Dec;4(12):4279–4289. doi: 10.1093/nar/4.12.4279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Grummt I. Synthesis of RNA molecules larger than 45 S by isolated rat-liver nucleoli. Eur J Biochem. 1975 Sep 1;57(1):159–167. doi: 10.1111/j.1432-1033.1975.tb02286.x. [DOI] [PubMed] [Google Scholar]
  17. Higashinakagawa T., Wahn H., Reeder R. H. Isolation of ribosomal gene chromatin. Dev Biol. 1977 Feb;55(2):375–386. doi: 10.1016/0012-1606(77)90180-4. [DOI] [PubMed] [Google Scholar]
  18. Jones R. W. Preparation of chromatin containing ribosomal deoxyribonucleic acid from the macronucleus of Tetrahymena pyriformis. Biochem J. 1978 Jul 1;173(1):145–153. doi: 10.1042/bj1730145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Kafatos F. C. The cocoonase zymogen cells of silk moths: a model of terminal cell differentiation for specific protein synthesis. Curr Top Dev Biol. 1972;7:125–191. doi: 10.1016/s0070-2153(08)60071-x. [DOI] [PubMed] [Google Scholar]
  20. Karrer K. M., Gall J. G. The macronuclear ribosomal DNA of Tetrahymena pyriformis is a palindrome. J Mol Biol. 1976 Jun 25;104(2):421–453. doi: 10.1016/0022-2836(76)90280-1. [DOI] [PubMed] [Google Scholar]
  21. Leer J. C., Nielsen O. F., Piper P. W., Westergaard O. Isolation of the ribosomal RNA gene from Tetrahymena in the state of transcriptionally active chromatin. Biochem Biophys Res Commun. 1976 Sep 20;72(2):720–731. doi: 10.1016/s0006-291x(76)80099-x. [DOI] [PubMed] [Google Scholar]
  22. Leick V., Andersen S. B. Polols and turnover rates of nuclear ribosomal RNA in Tetrahymena pyriformis. Eur J Biochem. 1970 Jul;14(3):460–464. doi: 10.1111/j.1432-1033.1970.tb00311.x. [DOI] [PubMed] [Google Scholar]
  23. Mandel J. L., Chambon P. Animal DNA-dependent RNA polymerases. Analysis of the RNAs synthesized on Simian virus 40 superhelical DNA by mammalian RNA polymerases AI and B. Eur J Biochem. 1974 Jan 16;41(2):379–395. doi: 10.1111/j.1432-1033.1974.tb03280.x. [DOI] [PubMed] [Google Scholar]
  24. Pinder J. C., Staynov D. Z., Gratzer W. B. Electrophoresis of RNA in formamide. Biochemistry. 1974 Dec 17;13(26):5373–5378. doi: 10.1021/bi00723a019. [DOI] [PubMed] [Google Scholar]
  25. Shani M., Birkenmeier E., May E., Salzman N. P. Properties of simian virus 40 transcriptional intermediates isolated from nuclei of permissive cells. J Virol. 1977 Jul;23(1):20–28. doi: 10.1128/jvi.23.1.20-28.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Yao M. C., Gorovsky M. A. Comparison of the sequences of macro- and micronuclear DNA of Tetrahymena pyriformis. Chromosoma. 1974;48(1):1–18. doi: 10.1007/BF00284863. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES