Abstract
The substrate specificity of 2'-deoxy-2'-substituted uridines and their 5'-phosphates towards thymidylate synthetase from Escherichia coli K12 was investigated. Besides the natural substrate 2'-deoxyuridine-5'-phosphate (dUMP), only 2'-deoxy-2'-fluorouridine-5'-phosphate (dUflMP) was a substrate. The KM of dUflMP is 11 times higher than that of dUMP, while the Vmax values are virtually the same. It is concluded that the size of the 2'-substituent and not its polarity (and the concomitant conformational change) determines substrate specificity of thymidylate synthetase.
Full text
PDF






Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnott S. The geometry of nucleic acids. Prog Biophys Mol Biol. 1970;21:265–319. doi: 10.1016/0079-6107(70)90027-1. [DOI] [PubMed] [Google Scholar]
- Blandin M., Tran-Dinh-Son, Catlin J. C., Guschlbauer W. Nucleoside conformations. 16. Nuclear magnetic resonance and circular dichroism studies on pyrimidine-2'-fluoro-2'-deoxyribonucleosides. Biochim Biophys Acta. 1974 Sep 13;361(3):249–256. [PubMed] [Google Scholar]
- Byrd R. A., Dawson W. H., Ellis P. D., Dunlap R. B. 19F nuclear magnetic resonance investigation of the ternary complex formed between native thymidylate synthetase, 5-fluoro-2'-deoxyuridylate, and 5,10-methylenetetrahydrofolate. J Am Chem Soc. 1977 Aug 31;99(18):6139–6141. doi: 10.1021/ja00460a069. [DOI] [PubMed] [Google Scholar]
- Catlin J. C., Guschlbauer W. Oligonucleotide conformations. III. Comparative optical and thermodynamic studies of uridylyl-3'-5'-nucleosides containing ribose, deoxyribose, or 2'-deoxy-2'-fluororibose in the uridine moiety. Biopolymers. 1975 Jan;14(1):51–71. doi: 10.1002/bip.1975.360140105. [DOI] [PubMed] [Google Scholar]
- Danenberg P. V. Thymidylate synthetase - a target enzyme in cancer chemotherapy. Biochim Biophys Acta. 1977 Dec 23;473(2):73–92. doi: 10.1016/0304-419x(77)90001-4. [DOI] [PubMed] [Google Scholar]
- Daron H. H., Aull J. L. A kinetic study of thymidylate synthase from Lactobacillus casei. J Biol Chem. 1978 Feb 10;253(3):940–945. [PubMed] [Google Scholar]
- Davies D. B., Danyluk S. S. Nuclear magnetic resonance studies of 5'-ribo- and deoxyribonucleotide structures in solution. Biochemistry. 1974 Oct 8;13(21):4417–4434. doi: 10.1021/bi00718a027. [DOI] [PubMed] [Google Scholar]
- Dunlap R. B., Harding N. G., Huennekens F. M. Thymidylate synthetase from amethopterin-resistant Lactobacillus casei. Biochemistry. 1971 Jan 5;10(1):88–97. doi: 10.1021/bi00777a014. [DOI] [PubMed] [Google Scholar]
- Galivan J. H., Maley G. F., Maley F. The effect of substrate analogs on the circular dichroic spectra of thymidylate synthetase from Lactobacillus casei. Biochemistry. 1975 Jul 29;14(15):3338–3344. doi: 10.1021/bi00686a008. [DOI] [PubMed] [Google Scholar]
- Greenberg S., Moffatt J. G. Reactions of 2-acyloxyisobutyryl halides with nucleosides. I. Reactions of model diols and of uridine. J Am Chem Soc. 1973 Jun 13;95(12):4016–4025. doi: 10.1021/ja00793a031. [DOI] [PubMed] [Google Scholar]
- Guschlbauer W., Blandin M., Drocourt J. L., Thang M. N. Poly-2'-deoxy-2'-fluoro-cytidylic acid: enzymatic synthesis, spectroscopic characterization and interaction with poly-inosinic acid. Nucleic Acids Res. 1977 Jun;4(6):1933–1943. doi: 10.1093/nar/4.6.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guschlbauer W., Son T. D., Blandin M., Catlin J. C. Nucleoside conformations. XVII. A PMR study of 2'-anhydronucleosides and comparison with X-ray data. Nucleic Acids Res. 1974 Jul;1(7):855–864. doi: 10.1093/nar/1.7.855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guschlbauer W., de Garilhe M. P. Propriétés physicochimiques des nucléosides. II. Propriétés optiques de quelques arabinosides (bêta-D-arabinofuranosides) Bull Soc Chim Biol (Paris) 1969;51(10):1511–1520. [PubMed] [Google Scholar]
- HEIDELBERGER C., BOOHAR J., BIRNIE G. D. FLUORINATED PYRIMIDINES. XXII. EFFECTS OF VARIOUS COMPOUNDS ON THE INCORPORATION OF (14C)FORMATE INTO DNA THYMINE IN SUSPENSIONS OF EHRLICH ASCITES CELLS. Biochim Biophys Acta. 1964 Dec 16;91:636–638. doi: 10.1016/0926-6550(64)90012-x. [DOI] [PubMed] [Google Scholar]
- Hurwitz J., Yarbrough L., Wickner S. Utilization of deoxynucleoside triphosphates by DNA-dependent RNA polymerase of E. coli. Biochem Biophys Res Commun. 1972 Aug 7;48(3):628–635. doi: 10.1016/0006-291x(72)90394-4. [DOI] [PubMed] [Google Scholar]
- Ikehara M., Fukui T., Kakiuchi N. Polynucleotides. LII. Synthesis and properties of poly(2'-deoxy-2'-fluoroadenylic acid). Nucleic Acids Res. 1978 Jun;5(6):1877–1887. doi: 10.1093/nar/5.6.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
- James T. L., Pogolotti A. L., Jr, Ivanetich K. M., Wataya Y., Lam S. S., Santi D. V. Thymidylate synthetase: fluorine-19 nmr characterization of the active site peptide covalently bound to 5-fluoro-2'-deoxyuridylate and 5,10-methylenetetrahydrofolate. Biochem Biophys Res Commun. 1976 Sep 20;72(2):404–410. doi: 10.1016/s0006-291x(76)80057-5. [DOI] [PubMed] [Google Scholar]
- Janik B., Kotick M. P., Kreiser T. H., Reverman L. F., Sommer R. G., Wilson D. P. Synthesis and properties of poly 2'-fluoro-2'-deoxyuridylic acid. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1153–1160. doi: 10.1016/s0006-291x(72)80095-0. [DOI] [PubMed] [Google Scholar]
- Leary R. P., Beaudette N., Kisliuk R. L. Interaction of deoxyuridylate with thymidylate synthetase. J Biol Chem. 1975 Jul 10;250(13):4864–4868. [PubMed] [Google Scholar]
- McCuen R. W., Sirotnak F. M. Thymidylate synthetase from Diplococcus pneumoniae, properties and inhibition by folate analogs. Biochim Biophys Acta. 1975 Apr 19;384(2):369–380. doi: 10.1016/0005-2744(75)90038-8. [DOI] [PubMed] [Google Scholar]
- REYES P., HEIDELBERGER C. FLUORINATED PYRIMIDINES. XXV. THE INHIBITION OF THYMIDYLATE SYNTHETASE FROM EHRLICH ASCITES CARCINOMA CELLS BY PYRIMIDINE ANALOGS. Biochim Biophys Acta. 1965 May 11;103:177–179. [PubMed] [Google Scholar]
- Rode W. Syntetaza tymidylanowa. Postepy Biochem. 1977;23(1):81–93. [PubMed] [Google Scholar]
- Rottman F., Heinlein K. Polynucleotides containing 2'-O-methyladenosine. I. Synthesis by polynucleotide phosphorylase. Biochemistry. 1968 Jul;7(7):2635–2641. doi: 10.1021/bi00847a028. [DOI] [PubMed] [Google Scholar]
- Suck D., Saenger W., Main P., Germain G., Declercq J. P. X-ray structure of 3',5'-diacetyl-2'-deoxy-2'-fluorouridine: a pyrimidine nucleoside in the syn conformation. Biochim Biophys Acta. 1974 Sep 13;361(3):257–265. doi: 10.1016/0005-2787(74)90369-4. [DOI] [PubMed] [Google Scholar]
- Verheyden J. P., Wagner D., Moffatt J. G. Synthesis of some pyrimidine 2'-amino-2'-deoxynucleosides. J Org Chem. 1971 Jan 29;36(2):250–254. doi: 10.1021/jo00801a002. [DOI] [PubMed] [Google Scholar]
- WAHBA A. J., FRIEDKIN M. The enzymatic synthesis of thymidylate. I. Early steps in the purification of thymidylate synthetase of Escherichia coli. J Biol Chem. 1962 Dec;237:3794–3801. [PubMed] [Google Scholar]
- Yoshikawa M., Kato T., Takenishi T. A novel method for phosphorylation of nucleosides to 5'-nucleotides. Tetrahedron Lett. 1967 Dec;50:5065–5068. doi: 10.1016/s0040-4039(01)89915-9. [DOI] [PubMed] [Google Scholar]
- Zmudzka B., Janion C., Shugar D. Poly 2'-O-methylcytidylic acid and the role of the 2'-hydroxyl in polynucleotide structure. Biochem Biophys Res Commun. 1969 Dec 4;37(6):895–901. doi: 10.1016/0006-291x(69)90215-0. [DOI] [PubMed] [Google Scholar]
