Abstract
The melting transition for closed, underwound DNAs and for nicked or linear DNAs was monitored by velocity sedimentation and by absorbance spectroscopy in aqueous NaCCl3CO2 (NaTCA) and RbTCA. The addition of neutral trichloroacetate lowers the midpoint of the helix-coil transition by 26% C/M for RbTCA and by 32% C/M for NaTCA, depressing the denaturation region to near room temperature at neutral pH. The melting of nicked DNA is cooperative, occurring over a temperature range of about 5.6 degrees C. The melting profile for closed DNA is broad and noncooperative with a transition breadth greater than 45 degrees. Closed DNAs undergo a structural alteration, as revealed by velocity sedimentation, resulting in a reduction in the number of superhelical turns at temperatures and salt concentrations substantially below the melting temperatures and salt concentrations substantially below the melting temperature of the nicked DNA. The reduction in the extent of supercoiling continues upon isothermal addition of salt up to the salt concentration at which all superhelical turns are removed. The salt concentration at the principal minimum in the sedimentation velocity profile (3.16 M NaTCA for PM-2 DNA) is approximately the same as that at the midpoint of the helix-coil transition for the nicked DNA.
Full text
PDF

















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bauer W. R. Premelting unwinding of the deoxyribonucleic acid duplex by aqueous magnesium perchlorate. Biochemistry. 1972 Jul 18;11(15):2915–2920. doi: 10.1021/bi00765a027. [DOI] [PubMed] [Google Scholar]
- Bauer W. R. Structure and reactions of closed duplex DNA. Annu Rev Biophys Bioeng. 1978;7:287–313. doi: 10.1146/annurev.bb.07.060178.001443. [DOI] [PubMed] [Google Scholar]
- Bauer W. R. Structure of DNA in denaturing solvents. I. Bacteriophage PM2 DNA in aqueous sodium perchlorate. J Mol Biol. 1972 Jun 20;67(2):183–198. doi: 10.1016/0022-2836(72)90235-5. [DOI] [PubMed] [Google Scholar]
- Bauer W., Vinograd J. Interaction of closed circular DNA with intercalative dyes. II. The free energy of superhelix formation in SV40 DNA. J Mol Biol. 1970 Feb 14;47(3):419–435. doi: 10.1016/0022-2836(70)90312-8. [DOI] [PubMed] [Google Scholar]
- Bruner R., Vinograd J. The evaluation of standard sedimentation coefficients of sodium RNA and sodium DNA from sedimentation velocity data in concentrated NaCl and CsCl solutions. Biochim Biophys Acta. 1965 Sep 6;108(1):18–29. doi: 10.1016/0005-2787(65)90104-8. [DOI] [PubMed] [Google Scholar]
- Burke R. L., Anderson P. J., Bauer W. R. Resolution of single- and double-stranded RNAs in buoyant cesium trichloroacetate. Anal Biochem. 1978 May;86(1):264–270. doi: 10.1016/0003-2697(78)90341-x. [DOI] [PubMed] [Google Scholar]
- Burke R. L., Bauer W. R. The properties of native and denatured DNA in buoyant rubidium trichloroacetate at neutral pH. Nucleic Acids Res. 1977 Jun;4(6):1891–1909. doi: 10.1093/nar/4.6.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Espejo R. T., Canelo E. S., Sinsheimer R. L. DNA of bacteriophage PM2: a closed circular double-stranded molecule. Proc Natl Acad Sci U S A. 1969 Aug;63(4):1164–1168. doi: 10.1073/pnas.63.4.1164. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hsieh T. S., Wang J. C. Thermodynamic properties of superhelical DNAs. Biochemistry. 1975 Feb 11;14(3):527–535. doi: 10.1021/bi00674a011. [DOI] [PubMed] [Google Scholar]
- Lee Y. F., Nomoto A., Detjen B. M., Wimmer E. A protein covalently linked to poliovirus genome RNA. Proc Natl Acad Sci U S A. 1977 Jan;74(1):59–63. doi: 10.1073/pnas.74.1.59. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
- Saucier J. M., Wang J. C. Angular alteration of the DNA helix by E. coli RNA polymerase. Nat New Biol. 1972 Oct 11;239(93):167–170. doi: 10.1038/newbio239167a0. [DOI] [PubMed] [Google Scholar]
- Upholt W. B., Gray H. B., Jr, Vinograd J. Sedimentation velocity behavior of closed circular SV40 DNA as a function of superhelix density, ionic strength, counterion and temperature. J Mol Biol. 1971 Nov 28;62(1):21–38. doi: 10.1016/0022-2836(71)90128-8. [DOI] [PubMed] [Google Scholar]
- Vinograd J., Lebowitz J. Physical and topological properties of circular DNA. J Gen Physiol. 1966 Jul;49(6):103–125. doi: 10.1085/jgp.49.6.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vinograd J., Lebowitz J., Watson R. Early and late helix-coil transitions in closed circular DNA. The number of superhelical turns in polyoma DNA. J Mol Biol. 1968 Apr 14;33(1):173–197. doi: 10.1016/0022-2836(68)90287-8. [DOI] [PubMed] [Google Scholar]
- Wang J. C. Variation of the average rotation angle of the DNA helix and the superhelical turns of covalently closed cyclic lambda DNA. J Mol Biol. 1969 Jul 14;43(1):25–39. doi: 10.1016/0022-2836(69)90076-x. [DOI] [PubMed] [Google Scholar]
- Watson R., Bauer W. R. The viscometric behavior of native and relaxed closed circular PM2 DNAs at intermediate and high ethidium bromide concentrations. Biopolymers. 1977 Jun;16(6):1343–1356. doi: 10.1002/bip.1977.360160614. [DOI] [PubMed] [Google Scholar]
