Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1978 Dec;5(12):4891–4903. doi: 10.1093/nar/5.12.4891

Spectroscopic properties of ethidium monoazide: a fluorescent photoaffinity label for nucleic acids.

P H Bolton, D R Kearns
PMCID: PMC342796  PMID: 745997

Abstract

The non-covalent binding of ethidium monoazide to nucleic acids is entirely analogous to that of ethidium (binding constant approximately 2-3 X 10(5) M). The ethidium monoazide can be photochemically covalently linked to nucleic acids in high yield, up to 75%, by long wavelength light. The fluorescence of ethidium monoazide and ethidium crosslinked to nucleic acids show the same environmental sensitivity as does the fluorescence of ethidium. These properties of ethidium monoazide indicate its use as a fluorescent photoaffinity label for nucleic acids. Ethidium diazide can be photochemically linked to nucleic acids but appears to have properties substantially different from those of ethidium.

Full text

PDF
4891

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bittman R. Studies of the binding of ethidium bromide to transfer ribonucleic acid: absorption, fluorescence, ultracentrifugation and kinetic investigations. J Mol Biol. 1969 Dec 14;46(2):251–268. doi: 10.1016/0022-2836(69)90420-3. [DOI] [PubMed] [Google Scholar]
  2. Cantrell C. E., Yielding K. L. Repair synthesis in human lymphocytes provoked by photolysis of ethidium azide. Photochem Photobiol. 1977 Feb;25(2):189–191. doi: 10.1111/j.1751-1097.1977.tb06896.x. [DOI] [PubMed] [Google Scholar]
  3. Chiao Y. C., Krugh T. R. Actinomycin D complexes with oligonucleotides as models for the binding of the drug to DNA. Paramagnetic induced relaxation experiments on drug-nucleic acid complexes. Biochemistry. 1977 Feb 22;16(4):747–755. doi: 10.1021/bi00623a029. [DOI] [PubMed] [Google Scholar]
  4. Early T. A., Kearns D. R., Burd J. F., Larson J. E., Wells R. D. High resolution proton nuclear magnetic resonance investigation of the structural and dynamic properties of d(C15A15)-d(T15G15). Biochemistry. 1977 Feb 8;16(3):541–551. doi: 10.1021/bi00622a031. [DOI] [PubMed] [Google Scholar]
  5. Graves D. E., Yielding L. W., Watkins C. L., Yielding K. L. Synthesis, separation and characterization of the mono- and diazide analogs of ethidium bromide. Biochim Biophys Acta. 1977 Nov 2;479(1):98–104. doi: 10.1016/0005-2787(77)90129-0. [DOI] [PubMed] [Google Scholar]
  6. Hixon S. C., White W. E., Jr, Yielding K. L. Selective covalent binding of an ethidium analog to mitochondrial DNA with production of petite mutants in yeast by photoaffinity labelling. J Mol Biol. 1975 Feb 25;92(2):319–329. doi: 10.1016/0022-2836(75)90231-4. [DOI] [PubMed] [Google Scholar]
  7. Isaacs S. T., Shen C. K., Hearst J. E., Rapoport H. Synthesis and characterization of new psoralen derivatives with superior photoreactivity with DNA and RNA. Biochemistry. 1977 Mar 22;16(6):1058–1064. doi: 10.1021/bi00625a005. [DOI] [PubMed] [Google Scholar]
  8. Jones C. R., Bolton P. H., Kearns D. R. Ethidium bromide binding to transfer RNA: transfer RNA as a model system for studying drug-RNA interactions. Biochemistry. 1978 Feb 21;17(4):601–607. doi: 10.1021/bi00597a007. [DOI] [PubMed] [Google Scholar]
  9. Jones C. R., Kearns D. R. Identification of a unique ethidium bromide binding site on yeast tRNAPhe by high resolution (300 MHz) nuclear magnetic resonance. Biochemistry. 1975 Jun 17;14(12):2660–2665. doi: 10.1021/bi00683a016. [DOI] [PubMed] [Google Scholar]
  10. Neidle S., Achari A., Taylor G. L., Berman H. M., Carrell H. L., Glusker J. P., Stallings W. C. Structure of a dinucleoside phosphate--drug complex as model for nucleic acid--drug interaction. Nature. 1977 Sep 22;269(5626):304–307. doi: 10.1038/269304a0. [DOI] [PubMed] [Google Scholar]
  11. Ofengand J., Bierbaum J. Use of photochemically induced cross-linking as a conformational probe of the tertiary structure of certain regions in transfer ribonucleic acid. Biochemistry. 1973 May 8;12(10):1977–1984. doi: 10.1021/bi00734a022. [DOI] [PubMed] [Google Scholar]
  12. Olmsted J., 3rd, Kearns D. R. Mechanism of ethidium bromide fluorescence enhancement on binding to nucleic acids. Biochemistry. 1977 Aug 9;16(16):3647–3654. doi: 10.1021/bi00635a022. [DOI] [PubMed] [Google Scholar]
  13. Ou C. N., Song P. S. Photobinding of 8-methoxypsoralen to transfer RNA and 5-fluorouracil-enriched transfer RNA. Biochemistry. 1978 Mar 21;17(6):1054–1059. doi: 10.1021/bi00599a018. [DOI] [PubMed] [Google Scholar]
  14. Patel D. J., Shen C. Sugar pucker geometries at the intercalation site of propidium diiodide into miniature RNA and DNA duplexes in solution. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2553–2557. doi: 10.1073/pnas.75.6.2553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Saucier J. M., Festy B., Le Pecq J. B. The change of the torsion of the DNA helix caused by intercalation. II. Measurement of the relative change of torsion induced by various intercalating drugs. Biochimie. 1971;53(9):973–980. doi: 10.1016/s0300-9084(71)80065-2. [DOI] [PubMed] [Google Scholar]
  16. Seeman N. C., Day R. O., Rich A. Nucleic acid-mutagen interactions: crystal structure of adenylyl-3',5'-uridine plus 9-aminoacridine. Nature. 1975 Jan 31;253(5490):324–327. doi: 10.1038/253324a0. [DOI] [PubMed] [Google Scholar]
  17. Tao T., Nelson J. H., Cantor C. R. Conformational studies on transfer ribonucleic acid. Fluorescence lifetime and nanosecond depolarization measurements on bound ethidium bromidee. Biochemistry. 1970 Sep 1;9(18):3514–3524. doi: 10.1021/bi00820a004. [DOI] [PubMed] [Google Scholar]
  18. Tritton T. R., Mohr S. C. Kinetics of ethidium bromide binding as a probe of transfer ribonucleic acid structure. Biochemistry. 1973 Feb 27;12(5):905–914. doi: 10.1021/bi00729a018. [DOI] [PubMed] [Google Scholar]
  19. Tsai C. C., Jain S. C., Sobell H. M. X-ray crystallographic visualization of drug-nucleic acid intercalative binding: structure of an ethidium-dinucleoside monophosphate crystalline complex, Ethidium: 5-iodouridylyl (3'-5') adenosine. Proc Natl Acad Sci U S A. 1975 Feb;72(2):628–632. doi: 10.1073/pnas.72.2.628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Wells B. D., Cantor C. R. A strong ethidium binding site in the acceptor stem of most or all transfer RNAs. Nucleic Acids Res. 1977;4(5):1667–1680. doi: 10.1093/nar/4.5.1667. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Yielding L. W., White W. E., Jr, Yielding K. L. Production of frameshift mutations in Salmonella by a light sensitive azide analog of ethidium. Mutat Res. 1976 Mar;34(3):351–358. doi: 10.1016/0027-5107(76)90214-1. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES