Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1975 Feb;2(2):185–196. doi: 10.1093/nar/2.2.185

Reassociation kinetics of three satellite components of calf thymus DNA.

H Votavová, J Sponar
PMCID: PMC342825  PMID: 1168341

Abstract

Using absorption measurements the reassociation kinetics of three satellite DNA components isolated from calf thymus was studied under various conditions. A different method using CsC1 density gradient determinations particularly suited for kinetic analysis of mixtures was also used and shown to give similar results. Reassociation rate constants were corrected for mismatching during strand reassociation using data obtained by kinetic analysis of fractions of the 1.714 g/cm-3 satellite component. The values of corrected as well as uncorrected complexities were calculated and compared with results of other methods. They were shown to be compatible with the concept of sequence repetition at various levels.

Full text

PDF
185

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Botchan M. R. Bovine satellite I DNA consists of repetitive units 1,400 base pairs in length. Nature. 1974 Sep 27;251(5473):288–292. doi: 10.1038/251288a0. [DOI] [PubMed] [Google Scholar]
  2. Botchan M., Kram R., Schmid C. W., Hearst J. E. Isolation and chromosomal localization of highly repeated DNA sequences in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1125–1129. doi: 10.1073/pnas.68.6.1125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Corneo G., Ginelli E., Polli E. Different satellite deoxyribonucleic acids of guinea pig and ox. Biochemistry. 1970 Mar 31;9(7):1565–1571. doi: 10.1021/bi00809a014. [DOI] [PubMed] [Google Scholar]
  4. Hatch F. T., Mazrimas J. A. Fractionation and characterization of satellite DNAs of the kangaroo rat (Dipodomys ordii). Nucleic Acids Res. 1974 Apr;1(4):559–575. doi: 10.1093/nar/1.4.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Hutton J. R., Wetmur J. G. Length dependence of the kinetic complexity of mouse satellite DNA. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1148–1155. doi: 10.1016/0006-291x(73)90620-7. [DOI] [PubMed] [Google Scholar]
  6. Laird C. D., McConaughy B. L., McCarthy B. J. Rate of fixation of nucleotide substitutions in evolution. Nature. 1969 Oct 11;224(5215):149–154. doi: 10.1038/224149a0. [DOI] [PubMed] [Google Scholar]
  7. Southern E. M. Base sequence and evolution of guinea-pig alpha-satellite DNA. Nature. 1970 Aug 22;227(5260):794–798. doi: 10.1038/227794a0. [DOI] [PubMed] [Google Scholar]
  8. Southern E. M. Effects of sequence divergence on the reassociation properties of repetitive DNAs. Nat New Biol. 1971 Jul 21;232(29):82–83. doi: 10.1038/newbio232082a0. [DOI] [PubMed] [Google Scholar]
  9. Sutton W. D., McCallum M. Mismatching and the reassociation rate of mouse satellite DNA. Nat New Biol. 1971 Jul 21;232(29):83–85. doi: 10.1038/newbio232083a0. [DOI] [PubMed] [Google Scholar]
  10. Thrower K. J., Peacocke A. R. The kinetics of renaturation of DNA. Biochim Biophys Acta. 1966 Jun 22;119(3):652–654. doi: 10.1016/0005-2787(66)90148-1. [DOI] [PubMed] [Google Scholar]
  11. Votavová H., Sponar J., Sormová Z. Isolation and properties of rapidly renaturing fractions of DNA from calf tissues. Eur J Biochem. 1970 Feb;12(2):208–216. doi: 10.1111/j.1432-1033.1970.tb00839.x. [DOI] [PubMed] [Google Scholar]
  12. Wetmur J. G., Davidson N. Kinetics of renaturation of DNA. J Mol Biol. 1968 Feb 14;31(3):349–370. doi: 10.1016/0022-2836(68)90414-2. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES