Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1975 Feb;2(2):197–210. doi: 10.1093/nar/2.2.197

Heterogeneity of mitochondrial DNA from Saccharomyces carlsbergensis. Denaturation mapping by electron microscopy.

G Christiansen, C Christiansen, A L Bak
PMCID: PMC342826  PMID: 1121424

Abstract

Electronmicroscopic observation of the denaturation pattern of 130 partially denaturated linear mitochondrial DNA molecules from Saccharomyces carlsbergensis was used to investigate the distribution of AT-rich sequences within the mitochondrial genome. The molecules were observed after heating to 43 degrees C in the presence of 12% formaldehyde. These conditions resulted in an average denaturation per molecule of 21%. The average length of the molecules was 10 mum, and a few molecules had a length corresponding to the size of the complete genome. The undenaturated regions varied in length from 0.1 to 5.0 mum with denaturated regions of length 0.02 to 0.1 mum in between. A denaturation map was constructed by use of one of the long molecules (28.7 mum) as a master molecule for positioning of all other molecules. This map shows distinct regions corresponding to the position of easily denaturated sequences in the mitochondrial DNA. These sequences which presumably correspond to the very AT-rich regions, known to exist in the yeast mitochondrial DNA, were found at intervals of about 0.5 - 3 mum on the map.

Full text

PDF
197

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bak A. L. DNA base composition in mycoplasma, bacteria and yeast. Curr Top Microbiol Immunol. 1973;61:89–149. doi: 10.1007/978-3-642-65531-9_3. [DOI] [PubMed] [Google Scholar]
  2. Bernardi G., Faures M., Piperno G., Slonimski P. P. Mitochondrial DNA's from respiratory-sufficient and cytoplasmic respiratory-deficient mutant yeast. J Mol Biol. 1970 Feb 28;48(1):23–42. doi: 10.1016/0022-2836(70)90216-0. [DOI] [PubMed] [Google Scholar]
  3. Bernardi G., Piperno G., Fonty G. The mitochondrial genome of wild-type yeast cells. I. Preparation and heterogeneity of mitochondrial DNA. J Mol Biol. 1972 Mar 28;65(2):173–189. doi: 10.1016/0022-2836(72)90275-6. [DOI] [PubMed] [Google Scholar]
  4. Bernardi G., Timasheff S. N. Optical rotatory dispersion and circular dichroism properties of yeast mitochondrial DNA's. J Mol Biol. 1970 Feb 28;48(1):43–52. doi: 10.1016/0022-2836(70)90217-2. [DOI] [PubMed] [Google Scholar]
  5. Borst P. Mitochondrial nucleic acids. Annu Rev Biochem. 1972;41:333–376. doi: 10.1146/annurev.bi.41.070172.002001. [DOI] [PubMed] [Google Scholar]
  6. Carnevali F., Leoni L. Intramolecular heterogeneity of yeast mitochondrial DNA. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1322–1331. doi: 10.1016/0006-291x(72)90217-3. [DOI] [PubMed] [Google Scholar]
  7. Christiansen C., Bak A. L., Stenderup A., Christiansen G. Repetitive DNA in yeasts. Nat New Biol. 1971 Jun 9;231(23):176–177. doi: 10.1038/newbio231176a0. [DOI] [PubMed] [Google Scholar]
  8. Christiansen C., Christiansen G., Bak A. L. Heterogeneity of mitochondrial DNA from Saccharomyces carlsbergensis: renaturation and sedimentation studies. J Mol Biol. 1974 Mar 25;84(1):65–82. doi: 10.1016/0022-2836(74)90212-5. [DOI] [PubMed] [Google Scholar]
  9. Ehrlich S. D., Thiery J. P., Bernardi G. The mitochondrial genome of wild-type yeast cells. 3. The pyrimidine tracts of mitochondrial DNA. J Mol Biol. 1972 Mar 28;65(2):207–212. doi: 10.1016/0022-2836(72)90277-x. [DOI] [PubMed] [Google Scholar]
  10. Fauman M., Rabiwitz M., Getz G. S. Base composition and sedimentation properties of mitochondrial RNA of Saccharomyces cerebisiae. Biochim Biophys Acta. 1969 Jun 17;182(2):355–360. doi: 10.1016/0005-2787(69)90186-5. [DOI] [PubMed] [Google Scholar]
  11. Inman R. B. A denaturation map of the lambda phage DNA molecule determined by electron microscopy. J Mol Biol. 1966 Jul;18(3):464–476. doi: 10.1016/s0022-2836(66)80037-2. [DOI] [PubMed] [Google Scholar]
  12. Inman R. B., Bertani G. Heat denaturation of P2 bacteriophage DNA: compositional heterogeneity. J Mol Biol. 1969 Sep 28;44(3):533–549. doi: 10.1016/0022-2836(69)90378-7. [DOI] [PubMed] [Google Scholar]
  13. Piperno G., Fonty G., Bernardi G. The mitochondrial genome of wild-type yeast cells. II. Investigations on the compositional heterogeneity of mitochondrial DNA. J Mol Biol. 1972 Mar 28;65(2):191–205. doi: 10.1016/0022-2836(72)90276-8. [DOI] [PubMed] [Google Scholar]
  14. Prunell A., Bernardi G. The mitochondrial genome of wild-type yeast cells. IV. Genes and spacers. J Mol Biol. 1974 Jul 15;86(4):825–841. doi: 10.1016/0022-2836(74)90356-8. [DOI] [PubMed] [Google Scholar]
  15. Reijnders L., Kleisen C. M., Grivell L. A., Borst P. Hybridization studies with yeast mitochondrial RNAs. Biochim Biophys Acta. 1972 Jul 20;272(3):396–407. doi: 10.1016/0005-2787(72)90392-9. [DOI] [PubMed] [Google Scholar]
  16. Reijnders L., Sloof P., Sival J., Borst P. Gel electrophoresis of RNA under denaturing conditions. Biochim Biophys Acta. 1973 Oct 26;324(3):320–333. doi: 10.1016/0005-2787(73)90278-5. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES