Abstract
Several studies have clearly demonstrated that the end of the acceptor stem was a very important area determining the aminoacylation properties of tRNAs. However the attempts to measure the contribution of this region to the binding of tRNAs to aminoacyl-tRNA synthetases have led to contradictory results. We report here the stepwise degradation of yeast tRNA-Phe and tRNA-Val from their 3' terminus, up to the seventh nucleotide : the affinity of each of the degraded-tRNA for their cognate aminoacyl-tRNA synthetase was compared to that of intact tRNA and it was found that these affinities are not significantly decreased when compared to those of the intact tRNAs.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baguley B. C., Staehelin M. A comparison of 1-methyladenine-containing sequences in transfer ribonucleic acid from yeast and from rat liver. Biochemistry. 1969 Jan;8(1):257–262. doi: 10.1021/bi00829a036. [DOI] [PubMed] [Google Scholar]
- Befort N., Fasiolo F., Bollack C., Ebel J. P. Etude du complexe entre tRNA-phe et phenylalanyl-tRNA synthetase de levure. Biochim Biophys Acta. 1970 Oct 15;217(2):319–331. [PubMed] [Google Scholar]
- Celis J. E., Hooper M. L., Smith J. D. Amino acid acceptor stem of E. coli suppressor tRNA tyr is a site of synthetase recognition. Nat New Biol. 1973 Aug 29;244(139):261–264. doi: 10.1038/newbio244261a0. [DOI] [PubMed] [Google Scholar]
- Chambers R. W., Aoyagi S., Furukawa Y., Zawadzka H., Bhanot O. S. Inactivation of valine acceptor ativity by a C-U missense change in the anticodon of yeast valine transfer ribonucleic acid. J Biol Chem. 1973 Aug 10;248(15):5549–5551. [PubMed] [Google Scholar]
- Crothers D. M., Seno T., Söll G. Is there a discriminator site in transfer RNA? Proc Natl Acad Sci U S A. 1972 Oct;69(10):3063–3067. doi: 10.1073/pnas.69.10.3063. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Deutscher M. P. Synthesis and functions of the -C-C-A terminus of transfer RNA. Prog Nucleic Acid Res Mol Biol. 1973;13:51–92. doi: 10.1016/s0079-6603(08)60100-2. [DOI] [PubMed] [Google Scholar]
- Dirheimer G., Ebel J. P. Fractionnement des tRNA de levure de bière par distribution en contre-courant. Bull Soc Chim Biol (Paris) 1967;49(12):1679–1687. [PubMed] [Google Scholar]
- Ebel J. P., Giegé R., Bonnet J., Kern D., Befort N., Bollack C., Fasiolo F., Gangloff J., Dirheimer G. Factors determining the specificity of the tRNA aminoacylation reaction. Non-absolute specificity of tRNA-aminoacyl-tRNA synthetase recognition and particular importance of the maximal velocity. Biochimie. 1973 May;55(5):547–557. doi: 10.1016/s0300-9084(73)80415-8. [DOI] [PubMed] [Google Scholar]
- Fasiolo F., Befort N., Boulander Y., Ebel J. P. Purification et quelques propriétés de la phenylalanyl-tRNA synthetase de levure de boulangerie. Biochim Biophys Acta. 1970 Oct 15;217(2):305–318. [PubMed] [Google Scholar]
- Kelmers A. D., Heatherly D. E. Columns for rapid chromatographic separation of small amounts of tracer-labeled transfer ribonucleic acids. Anal Biochem. 1971 Dec;44(2):486–495. doi: 10.1016/0003-2697(71)90236-3. [DOI] [PubMed] [Google Scholar]
- Lagerkvist U., Rymo L. Structure and function of transfer ribonucleic acid. IV. Complexes between valyl transfer ribonucleic acid synthetase and structurally modified transfer ribonucleic acid specific for valine. J Biol Chem. 1970 Jan 25;245(2):435–438. [PubMed] [Google Scholar]
- Makman M. H., Cantoni G. L. Studies concerning the interaction of serine soluble ribonucleic acid with seryl soluble ribonucleic acid synthetase from baker's yeast. Biochemistry. 1966 Jul;5(7):2246–2254. doi: 10.1021/bi00871a013. [DOI] [PubMed] [Google Scholar]
- Roy K. L., Tener G. M. Inhibition of aminoacyl transfer ribonucleic acid synthetases by modified transfer ribonucleic acids. Biochemistry. 1967 Sep;6(9):2847–2852. doi: 10.1021/bi00861a027. [DOI] [PubMed] [Google Scholar]
- Schlimme E., von der Haar F., Eckstein F., Cramer F. Chemically modified phenylalanine transfer ribonucleic acid from yeast. Synthesis and properties of tRNA Phe-C-Cs-A and the effect of adenosine 5'-O-(1-thiotriphosphate) on the activation of phenylalanine. Eur J Biochem. 1970 Jun;14(2):351–356. doi: 10.1111/j.1432-1033.1970.tb00296.x. [DOI] [PubMed] [Google Scholar]
- Schulman L. H., Goddard J. P. Loss of methionine acceptor activity resulting from a base change in the anticodon of Escherichia coli formylmethionine transfer ribonucleic acid. J Biol Chem. 1973 Feb 25;248(4):1341–1345. [PubMed] [Google Scholar]
- Thiebe R., Zachau H. G. Acceptor activity in homologous and heterologous combinations of half molecules from tRNA Phe yeast and tRNA Phe wheat. Biochem Biophys Res Commun. 1969 Sep 10;36(6):1024–1031. doi: 10.1016/0006-291x(69)90307-6. [DOI] [PubMed] [Google Scholar]
- Uziel M., Khym J. X. Sequential degradation of nucleic acids. Degradation of Escherichia coli B phenylalanine transfer ribonucleic acid. Biochemistry. 1969 Aug;8(8):3254–3260. doi: 10.1021/bi00836a018. [DOI] [PubMed] [Google Scholar]
- Yarus M., Berg P. Recognition of tRNA by aminoacyl tRNA synthetases. J Mol Biol. 1967 Sep 28;28(3):479–490. doi: 10.1016/s0022-2836(67)80098-6. [DOI] [PubMed] [Google Scholar]
