Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1975 Mar;2(3):405–421. doi: 10.1093/nar/2.3.405

A model for chromatin sub-structure incorporating symmetry considerations of histone oligomers

JE Hyde 1, IO Walker 1
PMCID: PMC342846  PMID: 1129140

Abstract

Symmetry considerations of the kind of structures which can be generated when dimers of histones f2a1-f3 and f2a2-f2b interact lead to the following conclusions: chromatin subunits based on closed-shell structures give rise to discrete, non-interacting nucleoprotein subunits with the histones arranged at random along the DNA chain; open structures based on infinite helices give rise to highly ordered, regular arrangements of dimers. A model is proposed in which helical polymers of f2a1-f3 and f2b-f2a2 form a central core with the DNA helically arranged around it. The helical repeat contains 9.6 turns of B-form DNA and one molecule each of f2a1, f2a2, f2b, f3 and f1. The pitch of the helix is 53Å and the outer diameter 130Å. The protein molecular repeat is 106Å.

Full text

PDF
405

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin J. P., Boseley P. G., Bradbury E. M., Ibel K. The subunit structure of the eukaryotic chromosome. Nature. 1975 Jan 24;253(5489):245–249. doi: 10.1038/253245a0. [DOI] [PubMed] [Google Scholar]
  2. Bartley J. A., Chalkley R. The viscosity of nucleohistone in urea. Biochim Biophys Acta. 1968 Jun 26;160(2):224–228. doi: 10.1016/0005-2795(68)90090-1. [DOI] [PubMed] [Google Scholar]
  3. Bradbury E. M., Cary P. D., Crane-Robinson C., Rattle H. W. Conformations and interactions of histones and their role in chromosome structure. Ann N Y Acad Sci. 1973 Dec 31;222:266–289. doi: 10.1111/j.1749-6632.1973.tb15268.x. [DOI] [PubMed] [Google Scholar]
  4. Bram S., Butler-Browne G., Bradbury E. M., Baldwin J., Reiss C., Ibel K. Chromatin neutron and X-ray diffraction studies and high resolution melting of DNA-histone complexes. Biochimie. 1974;56(6-7):987–994. doi: 10.1016/s0300-9084(74)80519-5. [DOI] [PubMed] [Google Scholar]
  5. Bram S., Ris H. On the structure of nucleohistone. J Mol Biol. 1971 Feb 14;55(3):325–336. doi: 10.1016/0022-2836(71)90321-4. [DOI] [PubMed] [Google Scholar]
  6. Chatterjee S., Walker I. O. The modification of deoxyribonucleohistone by trypsin and chymotrypsin. Eur J Biochem. 1973 May 2;34(3):519–526. doi: 10.1111/j.1432-1033.1973.tb02789.x. [DOI] [PubMed] [Google Scholar]
  7. D'Anna J. A., Jr, Isenberg I. A complex of histones IIb2 and IV. Biochemistry. 1973 Mar 13;12(6):1035–1043. doi: 10.1021/bi00730a003. [DOI] [PubMed] [Google Scholar]
  8. D'Anna J. A., Jr, Isenberg I. A histone cross-complexing pattern. Biochemistry. 1974 Nov 19;13(24):4992–4997. doi: 10.1021/bi00721a019. [DOI] [PubMed] [Google Scholar]
  9. D'Anna J. A., Jr, Isenberg I. Interactions of histone LAK (f2a2) with histones KAS (f2b) and GRK (f2a1). Biochemistry. 1974 May 7;13(10):2098–2104. doi: 10.1021/bi00707a016. [DOI] [PubMed] [Google Scholar]
  10. DeLange R. J., Smith E. L. Histones: structure and function. Annu Rev Biochem. 1971;40:279–314. doi: 10.1146/annurev.bi.40.070171.001431. [DOI] [PubMed] [Google Scholar]
  11. Edwards P. A., Shooter K. V. A study of calf thymus histone fraction F2(b) by gel filtration. Biochem J. 1970 Nov;120(1):61–66. doi: 10.1042/bj1200061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Garrett R. A. Reconstitution of nucleohistone from homologous and heterologous components. J Mol Biol. 1968 Dec 14;38(2):249–250. doi: 10.1016/0022-2836(68)90411-7. [DOI] [PubMed] [Google Scholar]
  13. Hanson K. R. Symmetry of protein oligomers formed by isologous association. J Mol Biol. 1966 Dec 28;22(2):405–409. doi: 10.1016/0022-2836(66)90149-5. [DOI] [PubMed] [Google Scholar]
  14. Henson P., Walker I. O. The structure of nucleohistone. Hydrodynamic behaviour at high ionic strength. Eur J Biochem. 1971 Sep 13;22(1):1–4. doi: 10.1111/j.1432-1033.1971.tb01506.x. [DOI] [PubMed] [Google Scholar]
  15. Hewish D. R., Burgoyne L. A. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun. 1973 May 15;52(2):504–510. doi: 10.1016/0006-291x(73)90740-7. [DOI] [PubMed] [Google Scholar]
  16. Hyde J. E., Walker I. O. Covalent cross-linking of histones in chromatin. FEBS Lett. 1975 Feb 1;50(2):150–154. doi: 10.1016/0014-5793(75)80477-7. [DOI] [PubMed] [Google Scholar]
  17. Hyde J. E., Walker I. O. The reactivity of the thiol groups of calf thymus deoxyribonucleohistone. Nucleic Acids Res. 1974 Feb;1(2):203–215. doi: 10.1093/nar/1.2.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kelley R. I. Isolation of a histone IIb1-IIb2 complex. Biochem Biophys Res Commun. 1973 Oct 15;54(4):1588–1594. doi: 10.1016/0006-291x(73)91168-6. [DOI] [PubMed] [Google Scholar]
  19. Kornberg R. D. Chromatin structure: a repeating unit of histones and DNA. Science. 1974 May 24;184(4139):868–871. doi: 10.1126/science.184.4139.868. [DOI] [PubMed] [Google Scholar]
  20. Kornberg R. D., Thomas J. O. Chromatin structure; oligomers of the histones. Science. 1974 May 24;184(4139):865–868. doi: 10.1126/science.184.4139.865. [DOI] [PubMed] [Google Scholar]
  21. LUZZATI V., NICOLAUIEFF A. THE STRUCTURE OF NUCLEOHISTONES AND NUCLEOPROTAMINES. J Mol Biol. 1963 Aug;7:142–163. doi: 10.1016/s0022-2836(63)80043-1. [DOI] [PubMed] [Google Scholar]
  22. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  23. Noll M. Subunit structure of chromatin. Nature. 1974 Sep 20;251(5472):249–251. doi: 10.1038/251249a0. [DOI] [PubMed] [Google Scholar]
  24. Pardon J. F., Wilkins M. H. A super-coil model for nucleohistone. J Mol Biol. 1972 Jul 14;68(1):115–124. doi: 10.1016/0022-2836(72)90267-7. [DOI] [PubMed] [Google Scholar]
  25. Roark D. E., Geoghegan T. E., Keller G. H. A two-subunit histone complex from calf thymus. Biochem Biophys Res Commun. 1974 Jul 24;59(2):542–547. doi: 10.1016/s0006-291x(74)80014-8. [DOI] [PubMed] [Google Scholar]
  26. Sahasrabuddhe C. G., Van Holde K. E. The effect of trypsin on nuclease-resistant chromatin fragments. J Biol Chem. 1974 Jan 10;249(1):152–156. [PubMed] [Google Scholar]
  27. Sperling R., Bustin M. Self assembly of histone F2a1. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4625–4629. doi: 10.1073/pnas.71.11.4625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Van Holde K. E., Sahasrabuddhe C. G., Shaw B. R. A model for particulate structure in chromatin. Nucleic Acids Res. 1974 Nov;1(11):1579–1586. doi: 10.1093/nar/1.11.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Walker I. O. Electrometric and spectrophotometric titration of histone and deoxyribonucleohistone. J Mol Biol. 1965 Dec;14(2):381–398. doi: 10.1016/s0022-2836(65)80189-9. [DOI] [PubMed] [Google Scholar]
  30. ZUBAY G., WILKINS M. H. A NOTE ON REVERSIBLE DISSOCIATION OF DEOXYRIBONUCLEOHISTONE. J Mol Biol. 1964 Jul;9:246–249. doi: 10.1016/s0022-2836(64)80104-2. [DOI] [PubMed] [Google Scholar]
  31. van der Westhuyzen D. R., von Holt C. A new procedure for the isolation and fractionation of histones. FEBS Lett. 1971 May 20;14(5):333–337. doi: 10.1016/0014-5793(71)80294-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES