Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1975 Apr;2(4):477–486. doi: 10.1093/nar/2.4.477

A clarification of the complex spectrum observed with the ultraviolet circular dichroism of ethidium bromide bound to DNA.

S Parodi, F Kendall, C Nicolini
PMCID: PMC342856  PMID: 1138233

Abstract

Ethidium bromide intercalation strongly effects the circular dichroism spectrum of DNA in the region of 230-300 mu, in a complex manner. In this report we present a study that quantitizes the relationships of the circular dichroism spectrum in the region of 230-300 mu and the ethidium bromide induced optical activity centered around 308 mu. We present evidence of two hidden cooperative bands that are probably the negative counterparts of the 308 mu band and 330 mu shoulder positive cooperative bands. The hidden band is quantitatively characterized. We confirm that the direct effect of ethidium bromide on the DNA spectrum is simply linearly proportional to the amount of intercalated dye. We also observe that the ethidium bromide enters freely when there is a molecule intercalated for every 3 sites, but that the intercalation is more difficult when the molecule intercalates at every second site.

Full text

PDF
477

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktipis S., Kindelis A. Optical properties of the deoxyribonucleic acid-ethidium bromide complex. Effect of salt. Biochemistry. 1973 Mar 13;12(6):1213–1221. doi: 10.1021/bi00730a031. [DOI] [PubMed] [Google Scholar]
  2. Bauer W., Vinograd J. Interaction of closed circular DNA with intercalative dyes. II. The free energy of superhelix formation in SV40 DNA. J Mol Biol. 1970 Feb 14;47(3):419–435. doi: 10.1016/0022-2836(70)90312-8. [DOI] [PubMed] [Google Scholar]
  3. Bauer W., Vinograd J. The interaction of closed circular DNA with intercalative dyes. I. The superhelix density of SV40 DNA in the presence and absence of dye. J Mol Biol. 1968 Apr 14;33(1):141–171. doi: 10.1016/0022-2836(68)90286-6. [DOI] [PubMed] [Google Scholar]
  4. Crothers D. M. Calculation of binding isotherms for heterogenous polymers. Biopolymers. 1968 Apr;6(4):575–584. doi: 10.1002/bip.1968.360060411. [DOI] [PubMed] [Google Scholar]
  5. Dalgleish D. G., Peacocke A. R. The circular dichroism in the ultraviolet of aminoacridines and ethidium bromide bound to DNA. Biopolymers. 1971 Oct;10(10):1853–1863. doi: 10.1002/bip.360101008. [DOI] [PubMed] [Google Scholar]
  6. Houssier C., Hardy B., Fredericq E. Interaction of ethidium bromide with DNA. Optical and electrooptical study. Biopolymers. 1974 Jun;13(6):1141–1160. doi: 10.1002/bip.1974.360130607. [DOI] [PubMed] [Google Scholar]
  7. LePecq J. B., Paoletti C. A fluorescent complex between ethidium bromide and nucleic acids. Physical-chemical characterization. J Mol Biol. 1967 Jul 14;27(1):87–106. doi: 10.1016/0022-2836(67)90353-1. [DOI] [PubMed] [Google Scholar]
  8. Lee C. H., Chang C. T., Wetmur J. G. Induced circular dichroism of DNA-dye complexes. Biopolymers. 1973 May;12(5):1098–1122. doi: 10.1002/bip.1973.360120514. [DOI] [PubMed] [Google Scholar]
  9. Lurquin P. F., Seligy V. L. Binding of ethidium bromide to avian erythrocyte chromatin. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1399–1404. doi: 10.1016/s0006-291x(72)80131-1. [DOI] [PubMed] [Google Scholar]
  10. MAHLER H. R., KLINE B., MEHROTRA B. D. SOME OBSERVATIONS ON THE HYPOCHROMISM OF DNA. J Mol Biol. 1964 Sep;9:801–811. doi: 10.1016/s0022-2836(64)80186-8. [DOI] [PubMed] [Google Scholar]
  11. Moore D. S., Wagner T. E. Double-helical DNA and RNA circular dichroism. Calculations on base-sugar-phosphateehlix interactions. Biopolymers. 1974 May;13(5):977–986. doi: 10.1002/bip.1974.360130512. [DOI] [PubMed] [Google Scholar]
  12. Simpson R. T., Sober H. A. Circular dichroism of calf liver nucleohistone. Biochemistry. 1970 Aug 4;9(16):3103–3109. doi: 10.1021/bi00818a001. [DOI] [PubMed] [Google Scholar]
  13. Waring M. J. Complex formation between ethidium bromide and nucleic acids. J Mol Biol. 1965 Aug;13(1):269–282. doi: 10.1016/s0022-2836(65)80096-1. [DOI] [PubMed] [Google Scholar]
  14. Waring M. J. The effects of antimicrobial agents on ribonucleic acid polymerase. Mol Pharmacol. 1965 Jul;1(1):1–13. [PubMed] [Google Scholar]
  15. Warrington R. C., Hayward C., Kapuler A. M. Conformational studies of reovirus single-stranded RNAs synethesized in vitro. Biochim Biophys Acta. 1973 Dec 7;331(2):231–242. doi: 10.1016/0005-2787(73)90436-x. [DOI] [PubMed] [Google Scholar]
  16. Williams R. E., Lurquin P. F., Seligy V. L. Circular dichroism of avian-erythrocyte chromatin and ethidium bromide bound to chromatin. Eur J Biochem. 1972 Sep 25;29(3):426–432. doi: 10.1111/j.1432-1033.1972.tb02005.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES