Abstract
The binding of lactose repressor to non-operator DNA was studied by the modification of several DNA's, including glycosylated DNA, with dimethyl sulphate, which affects the minor and major grooves of DNA and single stranded DNA regions. The non-specific binding of the repressor to DNA protected the minor groove but apparently not the major groove of the DNA double helix against methylation and did not increase the content of single stranded DNA regions. This suggests that the repressor on binding to non-operator DNA makes contacts mainly in the minor groove of DNA and does not uncoil the DNA double helix. This is different from the interaction of the repressor with lactose operator DNA which occurs, as shown by Gilbert et al. (1), along both the major and the minor groove.
Full text
PDF







Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Georgopoulos C. P., Revel H. R. Studies with glucosyl transferase mutants of the T-even bacteriophages. Virology. 1971 May;44(2):271–285. doi: 10.1016/0042-6822(71)90259-5. [DOI] [PubMed] [Google Scholar]
- Gilbert W., Müller-Hill B. Isolation of the lac repressor. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1891–1898. doi: 10.1073/pnas.56.6.1891. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolchinskii A. M., Mirzabekov A. D., Zasedatelev A. C., Gurskii G. V., Grokhovskii S. L., Zhuze A. L., Gottikh B. P. O strukture kompleksov antibiotikov distamitsinovogo tipa i atkinomitsina D s DNK: novye eksperimental'nye dannye o lokalizatsii antibiotnkov v uzkoi borozdke DNK. Mol Biol (Mosk) 1975 Jan-Feb;9(1):19–27. [PubMed] [Google Scholar]
- LAWLEY P. D., BROOKES P. FURTHER STUDIES ON THE ALKYLATION OF NUCLEIC ACIDS AND THEIR CONSTITUENT NUCLEOTIDES. Biochem J. 1963 Oct;89:127–138. doi: 10.1042/bj0890127. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lin S. Y., Riggs A. D. Lac repressor binding to non-operator DNA: detailed studies and a comparison of eequilibrium and rate competition methods. J Mol Biol. 1972 Dec 30;72(3):671–690. doi: 10.1016/0022-2836(72)90184-2. [DOI] [PubMed] [Google Scholar]
- Lin S. Y., Riggs A. D. Lac repressor binding to operator analogues: comparison of poly(d(A-T)), poly(d(A-BrU)), and poly(d(A-U)). Biochem Biophys Res Commun. 1971 Dec 17;45(6):1542–1547. doi: 10.1016/0006-291x(71)90195-1. [DOI] [PubMed] [Google Scholar]
- Lin S., Riggs A. D. The general affinity of lac repressor for E. coli DNA: implications for gene regulation in procaryotes and eucaryotes. Cell. 1975 Feb;4(2):107–111. doi: 10.1016/0092-8674(75)90116-6. [DOI] [PubMed] [Google Scholar]
- Maurizot J. C., Charlier M., Hélène C. Lac repressor binding to poly (d(A-T)). Conformational changes. Biochem Biophys Res Commun. 1974 Oct 8;60(3):951–957. doi: 10.1016/0006-291x(74)90406-9. [DOI] [PubMed] [Google Scholar]
- Riggs A. D., Bourgeois S., Cohn M. The lac repressor-operator interaction. 3. Kinetic studies. J Mol Biol. 1970 Nov 14;53(3):401–417. doi: 10.1016/0022-2836(70)90074-4. [DOI] [PubMed] [Google Scholar]
- Riggs A. D., Lin S., Wells R. D. Lac repressor binding to synthetic DNAs of defined nucleotide sequence. Proc Natl Acad Sci U S A. 1972 Mar;69(3):761–764. doi: 10.1073/pnas.69.3.761. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Singer B. The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. Prog Nucleic Acid Res Mol Biol. 1975;15(0):219–284. [PubMed] [Google Scholar]
