Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Jan;3(1):35–47. doi: 10.1093/nar/3.1.35

A spin label study of the thermal unfolding of secondary and tertiary structure in E. colic transfer RNAs.

M Caron, H Dugas
PMCID: PMC342875  PMID: 175354

Abstract

The molecular mechanism of thermal unfolding of E. coli tRNAGlu, tRNAfMet and tRNAPhe (in 0.02M Tris-HC1, pH 7.5. 10 MM Mg C12) has been examined by the spin-labeling technique. The rate of tumbling of the spin label has been measured as a function of temperature for ten different selectively spin-labeled tRNAs. Only spin labels at position s4U-8 were able to probe the tertiary structure. Evidences are presented which support the hypothesis that the thermal denaturation of the three species of tRNAs studied is sequential. The unfolding process occurs in three discrete stages. The first step (30 degrees-32 degrees) could either be assigned to a localized reorganization of the cold-denatured structure or to a "transient" melting, followed by the simultaneous disruption of the tertiary structure and part of the hU helix. This transition is observed even in the absence of magnesium. The second step (50 degrees-54 degrees) involves the melting of the anticodon and miniloop regions. The last step occurs above 65 degrees where the t psi c and amino acid acceptor stems, forming one continuous double helix, melt. A simple dynamic model is considered for tRNA function in protein biosynthesis.

Full text

PDF
35

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brandts J. F., Jackson W. M., Ting T. Y. A calorimetric study of the thermal transitions of three specific transfer ribonucleic acids. Biochemistry. 1974 Aug 13;13(17):3595–3600. doi: 10.1021/bi00714a030. [DOI] [PubMed] [Google Scholar]
  2. Caron M., Dugas H. Specific spin-labeling of transfer ribonucleic acid molecules. Nucleic Acids Res. 1976 Jan;3(1):19–34. doi: 10.1093/nar/3.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Cole P. E., Crothers D. M. Conformational changes of transfer ribonucleic acid. Relaxation kinetics of the early melting transition of methionine transfer ribonucleic acid (Escherichia coli). Biochemistry. 1972 Nov 7;11(23):4368–4374. doi: 10.1021/bi00773a025. [DOI] [PubMed] [Google Scholar]
  4. Coutts S. M., Gangloff J., Dirheimer G. Conformational transitions in tRNA Asp (brewer's yeast). Thermodynamic, kinetic, and enzymatic measurements on oligonucleotide fragments and the intact molecule. Biochemistry. 1974 Sep 10;13(19):3938–3948. doi: 10.1021/bi00716a019. [DOI] [PubMed] [Google Scholar]
  5. Crothers D. M., Cole P. E., Hilbers C. W., Shulman R. G. The molecular mechanism of thermal unfolding of Escherichia coli formylmethionine transfer RNA. J Mol Biol. 1974 Jul 25;87(1):63–88. doi: 10.1016/0022-2836(74)90560-9. [DOI] [PubMed] [Google Scholar]
  6. Dourlent M., Yaniv M., Hélène C. Temperature-jump relaxation studies on transfer ribonucleic acids. Valine and tyrosine-specific tRNAs from Escherichia coli. Eur J Biochem. 1971 Mar 1;19(1):108–114. doi: 10.1111/j.1432-1033.1971.tb01293.x. [DOI] [PubMed] [Google Scholar]
  7. Dube S. K. Recognition of tRNA by the ribosome. A possible role of 5 S RNA. FEBS Lett. 1973 Oct 1;36(1):39–42. doi: 10.1016/0014-5793(73)80332-1. [DOI] [PubMed] [Google Scholar]
  8. Fresco J. R., Adams A., Ascione R., Henley D., Lindahl T. Tertiary structure in transfer ribonucleic acids. Cold Spring Harb Symp Quant Biol. 1966;31:527–537. doi: 10.1101/sqb.1966.031.01.068. [DOI] [PubMed] [Google Scholar]
  9. Goldstein R. N., Stefanovic S., Kallenbach N. R. On the conformation of transfer RNA in solution: dependence of denaturation temperature and structural parameters of mixed and formylmethionyl Escherichia coli transfer RNA on sodium ion concentration. J Mol Biol. 1972 Aug 21;69(2):217–236. doi: 10.1016/0022-2836(72)90227-6. [DOI] [PubMed] [Google Scholar]
  10. Gralla J., Crothers D. M. Free energy of imperfect nucleic acid helices. II. Small hairpin loops. J Mol Biol. 1973 Feb 5;73(4):497–511. doi: 10.1016/0022-2836(73)90096-x. [DOI] [PubMed] [Google Scholar]
  11. Gurel O. Tertiary structure of tRNA: a dynamic model. Physiol Chem Phys. 1973;5(3):177–182. [PubMed] [Google Scholar]
  12. Hara H., Horiuchi T., Saneyoshi M., Nishimura S. 4-Thiouridine-specific spin-labeling of E. coli transfer RNA. Biochem Biophys Res Commun. 1970 Jan 23;38(2):305–311. doi: 10.1016/0006-291x(70)90713-8. [DOI] [PubMed] [Google Scholar]
  13. Hoffman B. M., Schofield P., Rich A. Spin-labeled transfer RNA. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1195–1202. doi: 10.1073/pnas.62.4.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kim S. H., Sussman J. L., Suddath F. L., Quigley G. J., McPherson A., Wang A. H., Seeman N. C., RICH A. The general structure of transfer RNA molecules. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4970–4974. doi: 10.1073/pnas.71.12.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Levitt M. Orientation of double-helical segments in crystals of yeast phenylalanine transfer RNA. J Mol Biol. 1973 Oct 25;80(2):255–263. doi: 10.1016/0022-2836(73)90171-x. [DOI] [PubMed] [Google Scholar]
  16. Levy J., Biltonen R. Thermodynamic studies of transfer ribonucleic acids. 3. Thermodynamic model for the thermal unfolding of yeast phenylalanine-specific transfer ribonucleic acid. Biochemistry. 1972 Oct 24;11(22):4145–4152. doi: 10.1021/bi00772a018. [DOI] [PubMed] [Google Scholar]
  17. McIntosh A. R., Caron M., Dugas H. A specific spin labeling of the anticodon of E. coli tRNA-Glu. Biochem Biophys Res Commun. 1973 Dec 19;55(4):1356–1363. doi: 10.1016/s0006-291x(73)80043-9. [DOI] [PubMed] [Google Scholar]
  18. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  19. Römer R., Riesner D., Coutts S. M., Maass G. The coupling of conformational transitions in alanine specific transfer ribonucleic acid from yeast studied by a modified differential absorption technique. Eur J Biochem. 1970 Jul;15(1):77–84. doi: 10.1111/j.1432-1033.1970.tb00978.x. [DOI] [PubMed] [Google Scholar]
  20. Schofield P., Hoffman B. M., Rich A. Spin-labeling studies of aminoacyl transfer ribonucleic acid. Biochemistry. 1970 Jun 9;9(12):2525–2533. doi: 10.1021/bi00814a020. [DOI] [PubMed] [Google Scholar]
  21. Sprinzl M. On the structure of phenylalanine tRNA from yeast. Spin-label studies. Eur J Biochem. 1974 Dec 2;49(3):595–605. doi: 10.1111/j.1432-1033.1974.tb03863.x. [DOI] [PubMed] [Google Scholar]
  22. Woese C. Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature. 1970 May 30;226(5248):817–820. doi: 10.1038/226817a0. [DOI] [PubMed] [Google Scholar]
  23. Wong K. L., Wong Y. P., Kearns D. R. Investigation of the thermal unfolding of secondary and tertiary structure in E. coli tRNAfMet by high-resolution Nmr. Biopolymers. 1975 Apr;14(4):749–762. doi: 10.1002/bip.1975.360140407. [DOI] [PubMed] [Google Scholar]
  24. Yang C. H., Söll D. Studies of transfer RNA tertiary structure of singlet-singlet energy transfer. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2838–2842. doi: 10.1073/pnas.71.7.2838. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES