Abstract
The thermal denaturation of DNA from cell lines extensively substituted with bromodeoxyuridine has been examined spectrophotometrically over a wide range in ionic strength and by thermal elution from hydroxyapatite columns. BrdU substitution stabliizes DNA at all ionic strengths between 7.5 mM and 1350 mM potassium ion concentration, although a plot of log ionic strength vs Tm deviates from linearity above 150 mM. This nonlinearity is most pronounced with BrdU-substituted DNAs, resulting in a lowered delta Tm between unsubstituted and substituted DNA with increasing ionic strength. DMSO is shown to decrease the Tm of both unsubstituted and BrdU-substituted DNA equally, at a rate of .5 degrees C per 1% DMSO.
Full text
PDF













Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bick M. D., Davidson R. L. Total substitution of bromodeoxyuridine for thymidine in the DNA of a bromodeoxyuridine-dependent cell line. Proc Natl Acad Sci U S A. 1974 May;71(5):2082–2086. doi: 10.1073/pnas.71.5.2082. [DOI] [PMC free article] [PubMed] [Google Scholar]
- David J., Gordon J. S., Rutter W. J. Increased thermal stability of chromatin containing 5-bromodeoxyuridine-substituted DNA. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2808–2812. doi: 10.1073/pnas.71.7.2808. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Davidson R. L., Bick M. D. Bromodeoxyuridine dependence--a new mutation in mammalian cells. Proc Natl Acad Sci U S A. 1973 Jan;70(1):138–142. doi: 10.1073/pnas.70.1.138. [DOI] [PMC free article] [PubMed] [Google Scholar]
- INMAN R. B., BALDWIN R. L. Helix-random coil transitions in synthetic DNAs of alternating sequence. J Mol Biol. 1962 Aug;5:172–184. doi: 10.1016/s0022-2836(62)80082-5. [DOI] [PubMed] [Google Scholar]
- KIT S., DUBBS D. R., PIEKARSKI L. J., HSU T. C. DELETION OF THYMIDINE KINASE ACTIVITY FROM L CELLS RESISTANT TO BROMODEOXYURIDINE. Exp Cell Res. 1963 Aug;31:297–312. doi: 10.1016/0014-4827(63)90007-7. [DOI] [PubMed] [Google Scholar]
- KIT S., HSU T. C. Relative stability to thermal denaturation of deoxyribonucleic acid (DNA) preparations containing bromodeoxyuridine. Biochem Biophys Res Commun. 1961 Jun 2;5:120–124. doi: 10.1016/0006-291x(61)90023-7. [DOI] [PubMed] [Google Scholar]
- LEVINE L., GORDON J. A., JENCKS W. P. The relationship of structure to the effectiveness of denaturing agents for deoxyribonucleic acid. Biochemistry. 1963 Jan-Feb;2:168–175. doi: 10.1021/bi00901a030. [DOI] [PubMed] [Google Scholar]
- LITMAN R. M., PARDEE A. B. Production of bacteriophage mutants by a disturbance of deoxyribonucleic acid metabolism. Nature. 1956 Sep 8;178(4532):529–531. doi: 10.1038/178529b0. [DOI] [PubMed] [Google Scholar]
- Lapeyre J. N., Bekhoe I. Effects of 5-bromo-2'-deoxyuridine and dimethyl sulfoxide on properties and structure of chromatin. J Mol Biol. 1974 Oct 15;89(1):137–162. doi: 10.1016/0022-2836(74)90167-3. [DOI] [PubMed] [Google Scholar]
- MIYAZAWA Y., THOMAS C. A., Jr NUCLEOTIDE COMPOSITION OF SHORT SEGMENTS OF DNA MOLECULES. J Mol Biol. 1965 Feb;11:223–237. doi: 10.1016/s0022-2836(65)80053-5. [DOI] [PubMed] [Google Scholar]
- STOCKDALE F., OKAZAKI K., NAMEROFF M., HOLTZER H. 5-BROMODEOXYURIDINE: EFFECT ON MYOGENESIS IN VITRO. Science. 1964 Oct 23;146(3643):533–535. doi: 10.1126/science.146.3643.533. [DOI] [PubMed] [Google Scholar]
- STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
- Scher W., Preisler H. D., Friend C. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro. 3. Effects of 5-bromo-2'-deoxyuridine, dimethylformamide and dimethylsulfoxide. J Cell Physiol. 1973 Feb;81(1):63–70. doi: 10.1002/jcp.1040810108. [DOI] [PubMed] [Google Scholar]
- Schildkraut C. Dependence of the melting temperature of DNA on salt concentration. Biopolymers. 1965;3(2):195–208. doi: 10.1002/bip.360030207. [DOI] [PubMed] [Google Scholar]
- Simpson R. T., Seale R. L. Characterization of chromatin extensively substituted with 5-bromodeoxyuridine. Biochemistry. 1974 Oct 22;13(22):4609–4616. doi: 10.1021/bi00719a022. [DOI] [PubMed] [Google Scholar]
