Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Jan;3(1):63–68. doi: 10.1093/nar/3.1.63

Spectroscopic properties of various 2'(3')-O-aminoacyldinucleoside phosphates analogous to the 3' terminus of AA-tRNA.

A M Bobst, S Chládek
PMCID: PMC342877  PMID: 1250707

Abstract

Hypochromicity and circular dichroism data are reported for the 2' and 3'-0-aminiacyldinucleoside phosphates cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyl-adenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-L-phenylalanyladenosine, cytidylyl-(3'-5')-2'-deoxy-3'-0-glycyladenosine, and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine, all of which can act as analogs of the 3' terminus of AA-tRNA in various partial reactions of protein biosynthesis. Although all these systems have a 2'-OH group in the furanose of the 3'-residue, differences exist in the extent and/or mode of base-base overlap for most of them, except for cytidylyl-(3'-5')-2'(3')-0-L-phenylalanyladenosine and cytidylyl-(3'-5')-3'-deoxy-2'-0-L-phenylalanyladenosine. It is concluded that the biological activity of the above analogs is affected both by the position of the aminoacyl group and the stacking properties of the bases.

Full text

PDF
63

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES B. N., DUBIN D. T. The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. J Biol Chem. 1960 Mar;235:769–775. [PubMed] [Google Scholar]
  2. Adler A. J., Fasman G. D. Circular dichroism of valine and formylmethionine transfer RNA from Escherichia coli: effect of aminoacylation. Biochim Biophys Acta. 1970 Mar 19;204(1):183–190. doi: 10.1016/0005-2787(70)90501-0. [DOI] [PubMed] [Google Scholar]
  3. Chládek S., Ringer D., Quiggle K. "Nonisomerizable" 2'-and 3'-O-aminoacyl dinucleoside phosphates. Chemical synthesis and acceptor activity in the ribosomal peptidyltransferase reaction. Biochemistry. 1974 Jun 18;13(13):2727–2735. doi: 10.1021/bi00710a011. [DOI] [PubMed] [Google Scholar]
  4. Danchin A., Grunberg-Manago M. Differences in binding of oligo C to charged and uncharged tRNA. FEBS Lett. 1970 Sep 7;9(6):327–330. doi: 10.1016/0014-5793(70)80391-x. [DOI] [PubMed] [Google Scholar]
  5. Maelicke A., Sprinzl M., von der Haar F., Khwaja T. A., Cramer F. Structural studies on phenylalanine transfer ribonucleic acid from yeast with the spectroscopic label formycin. Eur J Biochem. 1974 Apr 16;43(3):617–625. doi: 10.1111/j.1432-1033.1974.tb03449.x. [DOI] [PubMed] [Google Scholar]
  6. Miller P. S., Fang K. N., Kondo N. S., Ts'o P. O. Syntheses and properties of adenine and thymine nucleoside alkyl phosphotriesters, the neutral analogs of dinucleoside monophosphates. J Am Chem Soc. 1971 Dec;93(24):6657–6665. doi: 10.1021/ja00753a054. [DOI] [PubMed] [Google Scholar]
  7. Ringer D., Chládek S. Interaction of elongation factor Tu with 2'(3')-O-aminoacyloligonucleotides derived from the 3' terminus of aminoacyl-tRNA. Proc Natl Acad Sci U S A. 1975 Aug;72(8):2950–2954. doi: 10.1073/pnas.72.8.2950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Sarin P. S., Zamecnik P. C. Conformational differences between s-RNA and aminoacyl s-RNA. Biochem Biophys Res Commun. 1965 Aug 16;20(4):400–405. doi: 10.1016/0006-291x(65)90590-5. [DOI] [PubMed] [Google Scholar]
  9. Thomas G. J., Jr, Chen M. C., Lord R. C., Kotsiopoulos P. S., Tritton T. R., Mohr S. C. Transfer RNA: change of conformation upon aminoacylation determined by Raman spectroscopy. Biochem Biophys Res Commun. 1973 Sep 18;54(2):570–577. doi: 10.1016/0006-291x(73)91461-7. [DOI] [PubMed] [Google Scholar]
  10. Watanabe K., Imahori K. The conformation difference between tRNA Met f and formylmethionyl-tRNA Met f from E. coli. Biochem Biophys Res Commun. 1971 Oct 15;45(2):488–494. doi: 10.1016/0006-291x(71)90845-x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES