Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Jan;3(1):69–78. doi: 10.1093/nar/3.1.69

DNA replication in eukaryotes: a model for the specific involvement of chromatin subunits.

D R Hewish
PMCID: PMC342878  PMID: 765971

Abstract

A model is proposed whereby eukaryotic DNA replication is specifically directed by the 200 base pair repeat structure of the DNA-histone complex. The model proposes a mechanism for the sequential, bidirectional replication of DNA from initial origin points on the chromatin fibre and is consistent with the known properties of eukaryotic DNA replication. Several predictions can be made from the model which are amenable to testing.

Full text

PDF
69

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin J. P., Boseley P. G., Bradbury E. M., Ibel K. The subunit structure of the eukaryotic chromosome. Nature. 1975 Jan 24;253(5489):245–249. doi: 10.1038/253245a0. [DOI] [PubMed] [Google Scholar]
  2. Bram S., Butler-Browne G., Baudy P., Ibel K. Quaternary structure of chromatin. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1043–1045. doi: 10.1073/pnas.72.3.1043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Burgoyne L. A., Hewish D. R., Mobbs J. Mammalian chromatin substructure studies with the calcium-magnesium endonuclease and two-dimensional polyacrylamide-gel electrophoresis. Biochem J. 1974 Oct;143(1):67–72. doi: 10.1042/bj1430067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Burgoyne L. A., Mobbs J. The reaction of the Ca-Mg endonuclease with the A-sites of rat nucleoprotein. Nucleic Acids Res. 1975 Sep;2(9):1551–1558. doi: 10.1093/nar/2.9.1551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gautschi J. R., Clarkson J. M. Discontinuous DNA replication in mouse P-815 cells. Eur J Biochem. 1975 Jan 2;50(2):403–412. doi: 10.1111/j.1432-1033.1975.tb09816.x. [DOI] [PubMed] [Google Scholar]
  6. Griffith J. D. Chromatin structure: deduced from a minichromosome. Science. 1975 Mar 28;187(4182):1202–1203. doi: 10.1126/science.187.4182.1202. [DOI] [PubMed] [Google Scholar]
  7. Hewish D. R., Burgoyne L. A. Chromatin sub-structure. The digestion of chromatin DNA at regularly spaced sites by a nuclear deoxyribonuclease. Biochem Biophys Res Commun. 1973 May 15;52(2):504–510. doi: 10.1016/0006-291x(73)90740-7. [DOI] [PubMed] [Google Scholar]
  8. Hewish D. R., Burgoyne L. A. The calcium dependent endonuclease activity of isolated nuclear preparations. Relationships between its occurrence and the occurrence of other classes of enzymes found in nuclear preparations. Biochem Biophys Res Commun. 1973 May 15;52(2):475–481. doi: 10.1016/0006-291x(73)90736-5. [DOI] [PubMed] [Google Scholar]
  9. Huberman J. A., Riggs A. D. On the mechanism of DNA replication in mammalian chromosomes. J Mol Biol. 1968 Mar 14;32(2):327–341. doi: 10.1016/0022-2836(68)90013-2. [DOI] [PubMed] [Google Scholar]
  10. Keller W. Characterization of purified DNA-relaxing enzyme from human tissue culture cells. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2550–2554. doi: 10.1073/pnas.72.7.2550. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Noll M. Internal structure of the chromatin subunit. Nucleic Acids Res. 1974 Nov;1(11):1573–1578. doi: 10.1093/nar/1.11.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Noll M. Internal structure of the chromatin subunit. Nucleic Acids Res. 1974 Nov;1(11):1573–1578. doi: 10.1093/nar/1.11.1573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Noll M. Subunit structure of chromatin. Nature. 1974 Sep 20;251(5472):249–251. doi: 10.1038/251249a0. [DOI] [PubMed] [Google Scholar]
  14. Nuzzo F., Brega A., Falaschi A. DNA replication in mammalian cells. I. The size of newly synthesized helices. Proc Natl Acad Sci U S A. 1970 Apr;65(4):1017–1024. doi: 10.1073/pnas.65.4.1017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Okazaki R., Okazaki T., Sakabe K., Sugimoto K., Sugino A. Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary structure of newly synthesized chains. Proc Natl Acad Sci U S A. 1968 Feb;59(2):598–605. doi: 10.1073/pnas.59.2.598. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Olins A. L., Olins D. E. Spheroid chromatin units (v bodies). Science. 1974 Jan 25;183(4122):330–332. doi: 10.1126/science.183.4122.330. [DOI] [PubMed] [Google Scholar]
  17. Painter R. B., Schaefer A. State of newly synthesized HeLa DNA. Nature. 1969 Mar 29;221(5187):1215–1217. doi: 10.1038/2211215a0. [DOI] [PubMed] [Google Scholar]
  18. Reichard P., Eliasson R., Söderman G. Initiator RNA in discontinuous polyoma DNA synthesis. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4901–4905. doi: 10.1073/pnas.71.12.4901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Schandl E. K., Taylor J. H. Early events in the replication and integration of DNA into mammalian chromosomes. Biochem Biophys Res Commun. 1969 Feb 7;34(3):291–300. doi: 10.1016/0006-291x(69)90830-4. [DOI] [PubMed] [Google Scholar]
  20. Seale R. L. Assembly of DNA and protein during replication in HeLa cells. Nature. 1975 May 15;255(5505):247–249. doi: 10.1038/255247a0. [DOI] [PubMed] [Google Scholar]
  21. Seale R. L., Simpson R. T. Effects of cycloheximide on chromatin biosynthesis. J Mol Biol. 1975 May 25;94(3):479–501. doi: 10.1016/0022-2836(75)90216-8. [DOI] [PubMed] [Google Scholar]
  22. Sollner-Webb B., Felsenfeld G. A comparison of the digestion of nuclei and chromatin by staphylococcal nuclease. Biochemistry. 1975 Jul;14(13):2915–2920. doi: 10.1021/bi00684a019. [DOI] [PubMed] [Google Scholar]
  23. Spadafora C., Geraci G. The subunit structure of sea urchin sperm chromatin: a kinetic approach. FEBS Lett. 1975 Sep 1;57(1):79–82. doi: 10.1016/0014-5793(75)80156-6. [DOI] [PubMed] [Google Scholar]
  24. Van Holde K. E., Sahasrabuddhe C. G., Shaw B. R. A model for particulate structure in chromatin. Nucleic Acids Res. 1974 Nov;1(11):1579–1586. doi: 10.1093/nar/1.11.1579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Wang J. C. Interaction between DNA and an Escherichia coli protein omega. J Mol Biol. 1971 Feb 14;55(3):523–533. doi: 10.1016/0022-2836(71)90334-2. [DOI] [PubMed] [Google Scholar]
  26. Waqar M. A., Huberman J. A. Covalent linkage between RNA and nascent DNA in the slime mold, Physarum polycephalum. Biochim Biophys Acta. 1975 Apr 2;383(4):410–420. doi: 10.1016/0005-2787(75)90310-x. [DOI] [PubMed] [Google Scholar]
  27. Waqar M. A., Huberman J. A. Evidence for the attachment of RNA to pulse-labeled DNA in the slime mold, Physarum polycephalum. Biochem Biophys Res Commun. 1973 Mar 5;51(1):174–180. doi: 10.1016/0006-291x(73)90524-x. [DOI] [PubMed] [Google Scholar]
  28. Weintraub H. The assembly of newly replicated DNA into chromatin. Cold Spring Harb Symp Quant Biol. 1974;38:247–256. doi: 10.1101/sqb.1974.038.01.028. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES