Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Mar;3(3):523–535. doi: 10.1093/nar/3.3.523

Role of modified nucleosides in tRNA: effect of modification of the 2-thiouridine derivative located at the 5'-end of the anticodon of yeast transfer RNA Lys2.

G C Sen, H P Ghosh
PMCID: PMC342923  PMID: 775440

Abstract

Yeast tRNA Lys2 codes preferentially for AAA and contains a 2-thiouridine derivative (U) at the 5'-position of the anticodon. Removal of the 2-thio group from U by treatment with CNBr did not affect the amino acid accepting activity of the modified tRNA Lys2. CNBr treated tRNA Lys2 was active in protein synthesis but with a much reduced efficiency. Although the modified tRNA Lys2 was recognized by elongation factor (EF) T, the EFT dependent binding to ribosomes to tRNA Lys2 (CNBr) was markedly decreased.

Full text

PDF
523

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Söll D., Seno T. Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry. 1973 Oct 23;12(22):4331–4337. doi: 10.1021/bi00746a005. [DOI] [PubMed] [Google Scholar]
  2. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  3. Folk W. R., Yaniv M. Coding properties and nucleotide sequences of E. coli glutamine tRNAs. Nat New Biol. 1972 Jun 7;237(75):165–166. doi: 10.1038/newbio237165a0. [DOI] [PubMed] [Google Scholar]
  4. Ghosh K., Ghosh H. P. Role of modified nucleosides in transfer ribonucleic acid. Effect of removal of the modified base adjacent to 3' end of the anticodon in codon-anticodon interaction. J Biol Chem. 1972 Jun 10;247(11):3369–3375. [PubMed] [Google Scholar]
  5. Kimura-Harada F., Saneyoshi M., Nishimura S. 5-methyl-2-thiouridine: A new sulfur-containing minor constituent from rat liver glutamic acid and lysine tRNAs. FEBS Lett. 1971 Apr 2;13(6):335–338. doi: 10.1016/0014-5793(71)80254-5. [DOI] [PubMed] [Google Scholar]
  6. Madison J. T., Boguslawski S. J., Teetor G. H. Nucleotide sequence of a lysine transfer ribonucleic Acid from bakers' yeast. Science. 1972 May 12;176(4035):687–689. doi: 10.1126/science.176.4035.687. [DOI] [PubMed] [Google Scholar]
  7. Madison J. T., Boguslawski S. J., Teetor G. H. Oligonucleotide composition of a yeast lysine transfer ribonucleic acid. Biochemistry. 1974 Jan 29;13(3):518–523. doi: 10.1021/bi00700a018. [DOI] [PubMed] [Google Scholar]
  8. Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
  9. Oashi Z., Saneyoshi M., Harada F., Hara H., Nishimura S. Presumed anticodon structure of glutamic acid tRNA from E. coli: a possible location of a 2-thiouridine derivative in the first position of the anticodon. Biochem Biophys Res Commun. 1970 Aug 24;40(4):866–872. doi: 10.1016/0006-291x(70)90983-6. [DOI] [PubMed] [Google Scholar]
  10. Ohashi Ziro, Harada Fumio, Nishimura Susumu. Primary sequence of glutamic acid tRNA II from Escherichia coli. FEBS Lett. 1972 Feb 1;20(2):239–241. doi: 10.1016/0014-5793(72)80804-4. [DOI] [PubMed] [Google Scholar]
  11. Pinkerton T. C., Paddock G., Abelson J. Bacteriophage T4 tRNA Leu . Nat New Biol. 1972 Nov 15;240(98):88–90. doi: 10.1038/newbio240088a0. [DOI] [PubMed] [Google Scholar]
  12. Saneyoshi M., Nishimura S. Selective inactivation of amino acid acceptor and ribosome-binding activities of Escherichia coli tRNA by modification with cyanogen bromide. Biochim Biophys Acta. 1971 Aug 12;246(1):123–131. doi: 10.1016/0005-2787(71)90077-3. [DOI] [PubMed] [Google Scholar]
  13. Scherberg N. H., Weiss S. B. T4 transfer RNAs: codon recognition and translational properties. Proc Natl Acad Sci U S A. 1972 May;69(5):1114–1118. doi: 10.1073/pnas.69.5.1114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sekiya T., Takeishi K., Ukita T. Specificity of yeast glutamic acid transfer RNA for codon recognition. Biochim Biophys Acta. 1969 Jun 17;182(2):411–426. doi: 10.1016/0005-2787(69)90192-0. [DOI] [PubMed] [Google Scholar]
  15. Sen G. C., Ghosh H. P. A fast and sensitive method for the analysis of modified nucleosides in tRNA. Anal Biochem. 1974 Apr;58(2):578–591. doi: 10.1016/0003-2697(74)90227-9. [DOI] [PubMed] [Google Scholar]
  16. Sen G. C., Ghosh H. P. Coding properties of isoaccepting lysine transfer RNA species from baker's yeast. Biochim Biophys Acta. 1973 Apr 21;308(7):106–116. doi: 10.1016/0005-2787(73)90127-5. [DOI] [PubMed] [Google Scholar]
  17. Seno T., Agris P. F., Söll D. Involvement of the anticodon region of Escherichia coli tRNAGln and tRNAGlu in the specific interaction with cognate aminoacyl-tRNA synthetase. Alteration of the 2-thiouridine derivatives located in the anticodon of the tRNAs by BrCN or sulfur deprivation. Biochim Biophys Acta. 1974 May 31;349(3):328–338. doi: 10.1016/0005-2787(74)90120-8. [DOI] [PubMed] [Google Scholar]
  18. Singhal R. P. Chemical probe of structure and function of transfer ribonucleic acids. Biochemistry. 1974 Jul 2;13(14):2924–2932. doi: 10.1021/bi00711a023. [DOI] [PubMed] [Google Scholar]
  19. Walker R. T., RajBhandary U. L. Studies on polynucleotides. CI. Escherichia coli tyrosine and formylmethionine transfer ribonucleic acids: effect of chemical modification of 4-thiouridine to uridine on their biological properties. J Biol Chem. 1972 Aug 10;247(15):4879–4892. [PubMed] [Google Scholar]
  20. White B. N. Studies on lysine, glutamine and glutamic acid tRNAs from Drosophila. Biochim Biophys Acta. 1975 Jul 7;395(3):322–328. doi: 10.1016/0005-2787(75)90203-8. [DOI] [PubMed] [Google Scholar]
  21. Yoshida M., Takeishi K., Ukita T. Structural studies on a yeast glutamic acid tRNA specific to GAA codon. Biochim Biophys Acta. 1971 Jan 1;228(1):153–166. doi: 10.1016/0005-2787(71)90555-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES