Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Mar;3(3):615–630. doi: 10.1093/nar/3.3.615

Synthesis of DNA complementary to the mRNAs for milk proteins by E. coli DNA polymerase I.

L M Houdebine
PMCID: PMC342928  PMID: 775441

Abstract

E.Coli DNA polymerase I (Klenow subfragment) was used for the synthesis of complementary DNA with the mRNAs for rabbit milk proteins as templates. The cDNA formed, contained 200 nucleotides and represented about 20% of the mRNA template. The cDNA was hybridized specifically to the mRNA templates. The Klenow subfragment of the E.Coli DNA polymerase I was as efficient as the avian myeloblastosis virus reverse transcriptase in the synthesis of cDNA. The mean size of the cDNA fragments obtained with the Klenow enzyme proved to be 70% of the value obtained with the AMV reverse transcriptase and at least twice the value generally obtained with the complete E.Coli DNA polymerase I. The cDNA was used for the detection and the quantification of the mRNA template in various RNA fractions.

Full text

PDF
615

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aviv H., Packman S., Swan D., Ross J., Leder P. In vitro synthesis of DNA complementary to mRNA derived from a light chain-producing myeloma tumour. Nat New Biol. 1973 Feb 7;241(110):174–176. doi: 10.1038/newbio241174a0. [DOI] [PubMed] [Google Scholar]
  2. Brutlag D., Atkinson M. R., Setlow P., Kornberg A. An active fragment of DNA polymerase produced by proteolytic cleavage. Biochem Biophys Res Commun. 1969 Dec 4;37(6):982–989. doi: 10.1016/0006-291x(69)90228-9. [DOI] [PubMed] [Google Scholar]
  3. Cavalieri L. F., Carroll E. RNA as a template with E. coli DNA polymerase. Biochem Biophys Res Commun. 1970 Nov 25;41(4):1055–1060. doi: 10.1016/0006-291x(70)90192-0. [DOI] [PubMed] [Google Scholar]
  4. Cavalieri L. F., Modak M. J., Marcus S. L. Evidence for allosterism in in vitro DNA synthesis on RNA templates. Proc Natl Acad Sci U S A. 1974 Mar;71(3):858–862. doi: 10.1073/pnas.71.3.858. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Falvey A. K., Kantor J. A., Robert-Guroff M. G., Picciano D. J., Weiss G. B., Vavich J. M., Anderson W. F. Mechanism of action of ribonucleic acid-directed deoxyribonucleic acid polymerase. I. Transcription of globin messenger ribonucleic acid. J Biol Chem. 1974 Nov 25;249(22):7049–7056. [PubMed] [Google Scholar]
  6. Gaye P., Houdebine L. M. Isolation and characterization of casein mRNAs from lactating ewe mammary glands. Nucleic Acids Res. 1975 May;2(5):707–722. doi: 10.1093/nar/2.5.707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gulati S. C., Kacian D. L., Spiegelman S. Conditions for using DNA polymerase I as an RNA-dependent DNA polymerase. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1035–1039. doi: 10.1073/pnas.71.4.1035. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Houdebine L. M., Gaye P., Favre A. Lack of poly(A) sequence in half of the messenger RNA coding for ewe alpha S casein. Nucleic Acids Res. 1974 Mar;1(3):413–426. doi: 10.1093/nar/1.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Houdebine L. M., Gaye P. Regulation of casein synthesis in the rabbit mammary gland. Titration of mRNA activity for casein under prolactin and progesterone treatments. Mol Cell Endocrinol. 1975 Jul;3(1):37–55. doi: 10.1016/0303-7207(75)90030-1. [DOI] [PubMed] [Google Scholar]
  10. Imaizumi T., Diggelmann H., Scherrer K. Demonstration of globin messenger sequences in giant nuclear precursors of messenger RNA of avian erythroblasts. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1122–1126. doi: 10.1073/pnas.70.4.1122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Jovin T. M., Englund P. T., Bertsch L. L. Enzymatic synthesis of deoxyribonucleic acid. XXVI. Physical and chemical studies of a homogeneous deoxyribonucleic acid polymerase. J Biol Chem. 1969 Jun 10;244(11):2996–3008. [PubMed] [Google Scholar]
  12. Karkas J. D. Reverse transcription by Escherichia coli DNA polymerase I. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3834–3838. doi: 10.1073/pnas.70.12.3834. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Klenow H., Overgaard-Hansen K., Patkar S. A. Proteolytic cleavage fo native DNA polymerase into two different catalytic fragments. Influence of assay condtions on the change of exonuclease activity and polymerase activity accompanying cleavage. Eur J Biochem. 1971 Oct 14;22(3):371–381. doi: 10.1111/j.1432-1033.1971.tb01554.x. [DOI] [PubMed] [Google Scholar]
  14. Loeb L. A., Tartof K. D., Travaglini E. C. Copying natural RNAs with E. coli DNA polymerase I. Nat New Biol. 1973 Mar 21;242(116):66–69. doi: 10.1038/newbio242066a0. [DOI] [PubMed] [Google Scholar]
  15. Milstein C., Brownlee G. G., Cartwright E. M., Jarvis J. M., Proudfoot N. J. Sequence analysis of immunoglobulin light chain messenger RNA. Nature. 1974 Nov 29;252(5482):354–359. doi: 10.1038/252354a0. [DOI] [PubMed] [Google Scholar]
  16. Modak M. J., Marcus S. L., Cavalieri L. F. Synthesis of DNA complementary to AMV RNA using E. coli polymerase I. Biochem Biophys Res Commun. 1974 Jan;56(1):247–255. doi: 10.1016/s0006-291x(74)80341-4. [DOI] [PubMed] [Google Scholar]
  17. Packman S., Aviv H., Ross J., Leder P. A comparison of globin genes in duck reticulocytes and liver cells. Biochem Biophys Res Commun. 1972 Nov 1;49(3):813–819. doi: 10.1016/0006-291x(72)90483-4. [DOI] [PubMed] [Google Scholar]
  18. Pemberton R. E., Liberti P., Baglioni C. Isolation of messenger RNA from polysomes by chromatography on oligo(dT)-cellulose. Anal Biochem. 1975 May 26;66(1):18–28. doi: 10.1016/0003-2697(75)90720-4. [DOI] [PubMed] [Google Scholar]
  19. Proudfoot N. J., Brownlee G. G. Sequence at the 3' end of globin mRNA shows homology with immunoglobulin light chain mRNA. Nature. 1974 Nov 29;252(5482):359–362. doi: 10.1038/252359a0. [DOI] [PubMed] [Google Scholar]
  20. RICHARDSON C. C., SCHILDKRAUT C. L., APOSHIAN H. V., KORNBERG A. ENZYMATIC SYNTHESIS OF DEOXYRIBONUCLEIC ACID. XIV. FURTHER PURIFICATION AND PROPERTIES OF DEOXYRIBONUCLEIC ACID POLYMERASE OF ESCHERICHIA COLI. J Biol Chem. 1964 Jan;239:222–232. [PubMed] [Google Scholar]
  21. Rabbitts T. H. Hybridization characteristics of enzymatically synthesised DNA complementary to mouse immunoglobulin messenger RNA. FEBS Lett. 1974 Jun 15;42(3):323–326. doi: 10.1016/0014-5793(74)80756-8. [DOI] [PubMed] [Google Scholar]
  22. Rosen J. M., Woo S. L., Comstock J. P. Regulation of casein messenger RNA during the development of the rat mammary gland. Biochemistry. 1975 Jul;14(13):2895–2903. doi: 10.1021/bi00684a016. [DOI] [PubMed] [Google Scholar]
  23. Ross J., Aviv H., Scolnick E., Leder P. In vitro synthesis of DNA complementary to purified rabbit globin mRNA (RNA-dependent DNA polymerase-reticulocyte-hemoglobin-density gradient centrifugation-oligo(dT) primer). Proc Natl Acad Sci U S A. 1972 Jan;69(1):264–268. doi: 10.1073/pnas.69.1.264. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  25. Sarin P. S., Reitz M. S., Gallo R. C. Transcription of heteropolymeric regions of avian myeloblastosis virus high molecular weight RNA with Escherichia coli DNA polymerase I. Biochem Biophys Res Commun. 1974 Jul 10;59(1):202–214. doi: 10.1016/s0006-291x(74)80194-4. [DOI] [PubMed] [Google Scholar]
  26. Setlow P., Kornberg A. Deoxyribonucleic acid polymerase: two distinct enzymes in one polypeptide. II. A proteolytic fragment containing the 5' leads to 3' exonuclease function. Restoration of intact enzyme functions from the two proteolytic fragments. J Biol Chem. 1972 Jan 10;247(1):232–240. [PubMed] [Google Scholar]
  27. Staynov D. Z., Pinder J. C., Gratzer W. B. Molecular weight determination of nucleic acids by gel electrophoresis in non-aqueous solution. Nat New Biol. 1972 Jan 26;235(56):108–110. doi: 10.1038/newbio235108a0. [DOI] [PubMed] [Google Scholar]
  28. Travaglini E. C., Loeb L. A. Ribonucleic acid dependent deoxyribonucleic acid synthesis by Escherichia coli deoxyribonucleic acid polymerase. I. Characterization of the polymerization reaction. Biochemistry. 1974 Jul 16;13(15):3010–3017. doi: 10.1021/bi00712a002. [DOI] [PubMed] [Google Scholar]
  29. Vogt V. M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem. 1973 Feb 15;33(1):192–200. doi: 10.1111/j.1432-1033.1973.tb02669.x. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES