Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Mar;3(3):835–845. doi: 10.1093/nar/3.3.835

Base composition heterogeneity of mammalian DNAs in CsCl-netropsin density gradient.

T Guttann, H Votavová, L Pivec
PMCID: PMC342944  PMID: 1272799

Abstract

DNAs of 15 mammals and some lower organisms were analysed by CsCl-netropsin density gradient centrifugation. Increased resolving power of this method enabled to detect many new components in mammalian DNAs. Distinct components were detected in the density range of the main band. These components found in different mammalian DNAs have probably limited variation in the G+C content. Most of other components seems to be species specific. The DNAs of lower organisms form homogeneous band even in the presence of netropsin. The relation between densities in CsCl-netropsin and CsCl density gradient is nonlinear. This result supports a hypothesis that in high ionic strength netropsin is preferentially bound to (dA.dT) clusters.

Full text

PDF
835

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arrighi F. E., Mandel M., Bergendahl J., Hsu T. C. Buoyant densities of DNA of mammals. Biochem Genet. 1970 Jun;4(3):367–376. doi: 10.1007/BF00485753. [DOI] [PubMed] [Google Scholar]
  2. Curtain C. C., Pascoe G., Hayman R. Satellite DNA in the sheep and goat. Biochem Genet. 1973 Nov;10(3):253–262. doi: 10.1007/BF00485703. [DOI] [PubMed] [Google Scholar]
  3. Eigner J., Doty P. The native, denatured and renatured states of deoxyribonucleic acid. J Mol Biol. 1965 Jul;12(3):549–580. doi: 10.1016/s0022-2836(65)80312-6. [DOI] [PubMed] [Google Scholar]
  4. Filipski J., Thiery J. P., Bernardi G. An analysis of the bovine genome by Cs2SO4-Ag density gradient centrifugation. J Mol Biol. 1973 Oct 15;80(1):177–197. doi: 10.1016/0022-2836(73)90240-4. [DOI] [PubMed] [Google Scholar]
  5. Hirsch I., Reischig J., Roubal J., Vonka V. Structure of herpes simplex virus DNA: topography of the molecule. I. Absence of circularly permuted sequences. Virology. 1975 Jun;65(2):494–505. [PubMed] [Google Scholar]
  6. Luck G., Triebel H., Waring M., Zimmer C. Conformation dependent binding of netropsin and distamycin to DNA and DNA model polymers. Nucleic Acids Res. 1974 Mar;1(3):503–530. doi: 10.1093/nar/1.3.503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Mitchell A. R. Properties of the homogeneous main band DNA from the human genome. Biochim Biophys Acta. 1974 Nov 20;374(1):12–22. doi: 10.1016/0005-2787(74)90195-6. [DOI] [PubMed] [Google Scholar]
  8. Pivec L., Stokrová J. Highly polymerous nuclear DNA from calf thymus isolated by gel filtration in 4 M guanidine hydrochloride. FEBS Lett. 1971 Apr 30;14(3):157–160. doi: 10.1016/0014-5793(71)80093-5. [DOI] [PubMed] [Google Scholar]
  9. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  10. Votavová H., Sponar J. Identification and separation of components of calf thymus DNA using a CsC1-netropsin density gradient. Nucleic Acids Res. 1975 Mar;2(3):431–446. doi: 10.1093/nar/2.3.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Wartell R. M., Larson J. E., Wells R. D. Netropsin. A specific probe for A-T regions of duplex deoxyribonucleic acid. J Biol Chem. 1974 Nov 10;249(21):6719–6731. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES