Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Apr;3(4):1081–1093. doi: 10.1093/nar/3.4.1081

Sepcific fragmentation of DNA heteroduplex molecules of two bacteriophage lambda mutants with endonuclease Si from Aspergillus oryzae.

V N Ksënzenko, L P Tikhomirova, N I Matvienko
PMCID: PMC342967  PMID: 1272803

Abstract

Heteroduplex DNA molecules of two bacteriophage mutants (lambda b2 and lambda i434ct68) were obtained by the method of molecular hybridization. These heteroduplexes possessed two types of loops formed as a result of: a) deletion in one of the DNA strands; and b) substitution of a DNA fragment for nonhomological one. The digestion of heteroduplexes with single-stranded specific nuclease SI from Aspergillus oryzae produced two fragments at 37 degrees C and three ones at 55 degrees C. The separation of fragments and determination of their molecular weight were carried out by means of electrophoresis in agarose. The molecular weights both measured and preliminarily calculated proved to be close. One of the fragments was identificated by its biological activity in CaCl2-dependent infectious system with helperphage.

Full text

PDF
1081

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ASHE H., SEAMAN E., VANVUNAKIS H., LEVINE L. CHARACTERIZATION OF A DEOXYRIBONUCLEASE OF MUSTELUS CANIS LIVER. Biochim Biophys Acta. 1965 May 18;99:298–306. doi: 10.1016/s0926-6593(65)80126-6. [DOI] [PubMed] [Google Scholar]
  2. Ando T. A nuclease specific for heat-denatured DNA in isolated from a product of Aspergillus oryzae. Biochim Biophys Acta. 1966 Jan 18;114(1):158–168. doi: 10.1016/0005-2787(66)90263-2. [DOI] [PubMed] [Google Scholar]
  3. Doerfler W., Hogness D. S. The strands of DNA from lambda and related bacteriophages: isolation and characterization. J Mol Biol. 1968 May 14;33(3):635–659. doi: 10.1016/0022-2836(68)90311-2. [DOI] [PubMed] [Google Scholar]
  4. Helling R. B., Goodman H. M., Boyer H. W. Analysis of endonuclease R-EcoRI fragments of DNA from lambdoid bacteriophages and other viruses by agarose-gel electrophoresis. J Virol. 1974 Nov;14(5):1235–1244. doi: 10.1128/jvi.14.5.1235-1244.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. KAISER A. D., HOGNESS D. S. The transformation of Escherichia coli with deoxyribonucleic acid isolated from bacteriophage lambda-dg. J Mol Biol. 1960 Dec;2:392–415. doi: 10.1016/s0022-2836(60)80050-2. [DOI] [PubMed] [Google Scholar]
  6. LEHMAN I. R., NUSSBAUM A. L. THE DEOXYRIBONUCLEASES OF ESCHERICHIA COLI. V. ON THE SPECIFICITY OF EXONUCLEASE I (PHOSPHODIESTERASE). J Biol Chem. 1964 Aug;239:2628–2636. [PubMed] [Google Scholar]
  7. LINN S., LEHMAN I. R. AN ENDONUCLEASE FROM NEUROSPORA CRASSA SPECIFIC FOR POLYNUCLEOTIDES LACKING AN ORDERED STRUCTURE. I. PURIFICATION AND PROPERTIES OF THE ENZYME. J Biol Chem. 1965 Mar;240:1287–1293. [PubMed] [Google Scholar]
  8. Lis J. T., Schleif R. The regulatory region of the L-arabinose operon: its isolation on a 1000 base-pair fragment from DNA heteroduplexes. J Mol Biol. 1975 Jul 5;95(3):409–416. doi: 10.1016/0022-2836(75)90199-0. [DOI] [PubMed] [Google Scholar]
  9. Mazin A. L., Sulimova G. E. Khromatografiia nukleinovykh kislot, belkov i nekotorykh fagov na granulirovannom gidroksiapatite. Biokhimiia. 1975 Jan-Feb;40(1):115–122. [PubMed] [Google Scholar]
  10. Mikulski A. J., Laskowski M., Sr Mung bean nuclease I. 3. Purification procedure and (3') omega monophosphatase activity. J Biol Chem. 1970 Oct 10;245(19):5026–5031. [PubMed] [Google Scholar]
  11. Shenk T. E., Rhodes C., Rigby P. W., Berg P. Biochemical method for mapping mutational alterations in DNA with S1 nuclease: the location of deletions and temperature-sensitive mutations in simian virus 40. Proc Natl Acad Sci U S A. 1975 Mar;72(3):989–993. doi: 10.1073/pnas.72.3.989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Shishido K., Ando T. Estimation of the double-helical content in various single-stranded nucleic acids by treatment with a single strand-specific nuclease. Biochim Biophys Acta. 1972 Dec 22;287(3):477–484. doi: 10.1016/0005-2787(72)90292-4. [DOI] [PubMed] [Google Scholar]
  13. Shishido K., Ando T. Site-specific fragmentation of bacteriophage T5 DNA by single-strand-specific S1 endonuclease. Biochim Biophys Acta. 1975 Apr 16;390(1):125–132. doi: 10.1016/0005-2787(75)90015-5. [DOI] [PubMed] [Google Scholar]
  14. Sutton W. D. A crude nuclease preparation suitable for use in DNA reassociation experiments. Biochim Biophys Acta. 1971 Jul 29;240(4):522–531. doi: 10.1016/0005-2787(71)90709-x. [DOI] [PubMed] [Google Scholar]
  15. Vogt V. M. Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem. 1973 Feb 15;33(1):192–200. doi: 10.1111/j.1432-1033.1973.tb02669.x. [DOI] [PubMed] [Google Scholar]
  16. Westmoreland B. C., Szybalski W., Ris H. Mapping of deletions and substitutions in heteroduplex DNA molecules of bacteriophage lambda by electron microscopy. Science. 1969 Mar 21;163(3873):1343–1348. doi: 10.1126/science.163.3873.1343. [DOI] [PubMed] [Google Scholar]
  17. Wilson D. A., Thomas C. A., Jr Hydroxyapatite chromatography of short double-helical DNA. Biochim Biophys Acta. 1973 Dec 21;331(3):333–340. doi: 10.1016/0005-2787(73)90019-1. [DOI] [PubMed] [Google Scholar]
  18. Yamamoto K. R., Alberts B. M., Benzinger R., Lawhorne L., Treiber G. Rapid bacteriophage sedimentation in the presence of polyethylene glycol and its application to large-scale virus purification. Virology. 1970 Mar;40(3):734–744. doi: 10.1016/0042-6822(70)90218-7. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES