Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 May;3(5):1249–1261. doi: 10.1093/nar/3.5.1249

Changes in transfer ribonucleic acids of Bacillus subtilis during different growth phases

Ram P Singhal 1, Barbara Vold 1
PMCID: PMC342984  PMID: 821040

Abstract

The transfer ribonucleic acids (tRNAs) of B. subtilis at different growth phases are examined for changes in the composition and the methylation of minor constituents. The composition of the tRNAs indicates about equal amounts of adenosine and uridine, and of guanosine and cytidine. About 3-4 residues are present as modified bases in the average tRNA molecule. The net composition of tRNAs appears to remain unaltered during different growth phases. In vitro methylation of tRNAs indicates lack of methyl groups in both exponentially growing cells and spores. In vivo methylation studies show tRNA methylation occurs during the stationary phase in the absence of net tRNA synthesis. Thus, both in vitro and in vivo methylation indicates that the tRNAs in exponentially growing cells do not contain their full complement of modified bases. More complete modification is noted in tRNAs from stationary cells or spores. Hence, tRNA modifications in general are preserved with fidelity even in the dormant spore but the possibility is left open that specific modifications of selected isoacceptors of tRNAs may occur.

Full text

PDF
1249

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Koh H., Söll D. The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch Biochem Biophys. 1973 Jan;154(1):277–282. doi: 10.1016/0003-9861(73)90058-1. [DOI] [PubMed] [Google Scholar]
  2. Arnold H. H., Schmidt W., Kersten H. Occurrence and biosynthesis of ribothymidine in tRNAs of B. subtilis. FEBS Lett. 1975 Mar 15;52(1):62–65. doi: 10.1016/0014-5793(75)80638-7. [DOI] [PubMed] [Google Scholar]
  3. Arnold H., Kersten H. The occurrence of ribothymidine, 1-methyladenosine, methylated guanosines and the corresponding methyltransferases in E. coli and Bacillus subtilis. FEBS Lett. 1973 Oct 1;36(1):34–38. doi: 10.1016/0014-5793(73)80331-x. [DOI] [PubMed] [Google Scholar]
  4. Cerutti P., Holt J. W., Miller N. Detection and determination of 5,6-dihydrouridine and 4-thiouridine in transfer ribonucleic acid from different sources. J Mol Biol. 1968 Jun 28;34(3):505–518. doi: 10.1016/0022-2836(68)90176-9. [DOI] [PubMed] [Google Scholar]
  5. Dijk J., Singhal R. P. Precursor molecules of transfer ribonucleic acids in Escherichia coli. J Biol Chem. 1974 Jan 25;249(2):645–648. [PubMed] [Google Scholar]
  6. Doi R. H., Kaneko I., Goehler B. Regulation of a serine transfer RNA of Bacillus subtilis under two growth conditions. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1548–1551. doi: 10.1073/pnas.56.5.1548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Doi R. H., Kaneko I., Igarashi R. T. Pattern of valine transfer ribonucleic acid of Bacillus subtilis under different growth conditions. J Biol Chem. 1968 Mar 10;243(5):945–951. [PubMed] [Google Scholar]
  8. Hussey C., Losick R., Sonenshein A. L. Ribosomal RNA synthesis is turned off during sporulation of Bacillus subtilis. J Mol Biol. 1971 Apr 14;57(1):59–70. doi: 10.1016/0022-2836(71)90119-7. [DOI] [PubMed] [Google Scholar]
  9. Kaneko I., Doi R. H. Alteration of valyl-sRNA during sporulation of bacillus subtilis. Proc Natl Acad Sci U S A. 1966 Mar;55(3):564–571. doi: 10.1073/pnas.55.3.564. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lazzarini R. A. Differences in lysine-sRNA from spore and vegetative cells of Bacillus subtillis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):185–190. doi: 10.1073/pnas.56.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Lazzarini R. A., Santangelo E. Medium-dependent alteration of lysine transfer ribonucleic acid in sporulating Bacillus subtilis cells. J Bacteriol. 1967 Jul;94(1):125–130. doi: 10.1128/jb.94.1.125-130.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lipsett M. N., Doctor B. P. Studies on tyrosine transfer ribonucleic acid, a sulfur-rich species from Escherichia coli. J Biol Chem. 1967 Sep 25;242(18):4072–4077. [PubMed] [Google Scholar]
  13. Macon J. B., Wolfenden R. 1-Methyladenosine. Dimroth rearrangement and reversible reduction. Biochemistry. 1968 Oct;7(10):3453–3458. doi: 10.1021/bi00850a021. [DOI] [PubMed] [Google Scholar]
  14. Oda K., Marmur J. Purification and properties of deoxyribonucleic acid methylase from Bacillus subtilis. Biochemistry. 1966 Feb;5(2):761–773. doi: 10.1021/bi00866a051. [DOI] [PubMed] [Google Scholar]
  15. Romeo J. M., Delk A. S., Rabinowitz J. C. The occurrence of a transmethylation reaction not involving S-adenosylmethionine in the formation of ribothymidine in Bacillus subtilis transfer-RNA. Biochem Biophys Res Commun. 1974 Dec 23;61(4):1256–1261. doi: 10.1016/s0006-291x(74)80419-5. [DOI] [PubMed] [Google Scholar]
  16. Singhal R. P., Best A. N. Examination of highly purified transfer RNAs from Escherichia coli. Differences in amount of minor components and presence of a cytidine-thiouridine photoproduct in "normal" tRNAs; a comparison of two analytical methods. Biochim Biophys Acta. 1973 Dec 21;331(3):357–368. [PubMed] [Google Scholar]
  17. Singhal R. P. Chemical probe of structure and function of transfer ribonucleic acids. Biochemistry. 1974 Jul 2;13(14):2924–2932. doi: 10.1021/bi00711a023. [DOI] [PubMed] [Google Scholar]
  18. Singhal R. P., Cohn W. E. Cation-exclusion chromatography on anion exchangers: application to nucleic acid components and comparison with anion-exchange chromatography. Biochemistry. 1973 Apr 10;12(8):1532–1537. doi: 10.1021/bi00732a010. [DOI] [PubMed] [Google Scholar]
  19. Singhal R. P. Ion-exlusion chromatography: analysis and isolation of nucleic acid components, and influence of separation parameters. Arch Biochem Biophys. 1972 Oct;152(2):800–810. doi: 10.1016/0003-9861(72)90276-7. [DOI] [PubMed] [Google Scholar]
  20. Spizizen J. TRANSFORMATION OF BIOCHEMICALLY DEFICIENT STRAINS OF BACILLUS SUBTILIS BY DEOXYRIBONUCLEATE. Proc Natl Acad Sci U S A. 1958 Oct 15;44(10):1072–1078. doi: 10.1073/pnas.44.10.1072. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sueoka N., Kano-Sueoka T. Transfer RNA and cell differentiation. Prog Nucleic Acid Res Mol Biol. 1970;10:23–55. doi: 10.1016/s0079-6603(08)60560-7. [DOI] [PubMed] [Google Scholar]
  22. Testa D., Rudner R. Synthesis of ribosomal RNA during sporulation in Bacillus subtilis. Nature. 1975 Apr 17;254(5501):630–632. doi: 10.1038/254630a0. [DOI] [PubMed] [Google Scholar]
  23. Vold B. S. Analysis of isoaccepting transfer ribonucleic acid species of Bacillus subtilis: changes in chromatography of transfer ribonucleic acids associated with stage of development. J Bacteriol. 1973 Apr;114(1):178–182. doi: 10.1128/jb.114.1.178-182.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vold B. S. Analysis of isoaccepting transfer ribonucleic acid species of Bacillus subtilis: chromatographic differences between transfer ribonucleic acids from spores and cells in exponential growth. J Bacteriol. 1973 Feb;113(2):825–833. doi: 10.1128/jb.113.2.825-833.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Vold B. Degree of completion of 3'-terminus of transfer ribonucleic acids of Bacillus subtilis 168 at various developmental stages and asporogenous mutants. J Bacteriol. 1974 Mar;117(3):1361–1362. doi: 10.1128/jb.117.3.1361-1362.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES