Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Jun;3(6):1577–1589. doi: 10.1093/nar/3.6.1577

Affinity labeling of phenylalanyl-tRNA synthetase from E.coli MRE-600 by E.coli tRNAphe containing photoreactive group

II Gorshkova 1, DG Knorre 1, OI Lavrik 1, GA Nevinsky 1
PMCID: PMC343015  PMID: 8772

Abstract

The photoinduced reaction of phenylalanyl-tRNA synthetase (E.C. 6.1.1.20) from E.coli MRE-600 with tRNAphe containing photoreative p-N3-C6H4-NHCOCH2-group attached to 4-thiouridine sU8 (azido-tRNAphe) was investigated. The attachment of this group does not influence the dissociation constant of the complex of Phe-tRNAphe with the enzyme,however it results in sevenfold increase of Km in the enzymatic aminoacylation of tRNAphe. Under irradiation at 300 nm at pH 5.8 the covalent binding of [14C]-Phe-azido-tRNAphe to the enzyme takes place 0.3 moles of the reagent being attached per mole of the enzyme. tRNA prevents the reaction. Phenylalanine, ATP,ADP,AMP, adenosine and pyrophosphate (2.5 × x 10−3 M) don't affect neither the stability of the tRNA-enzyme complex nor the rate of the affinity labelling. The presence of the mixture of either phenylalanine or phenylalaninol with ATP as well as phenylalaninol adenylate exibits 50% inhibition of the photoinduced reaction. Therefore, the reaction of [14C]-Phe-azido-tRNA with the enzyme is significantly less sensitive to the presence of the ligands than the reaction of chlorambucilyl-tRNA with the reactive group attached to the acceptor end of the tRNA studied in 1. It has been concluded that the kinetics of the affinity labelling does permit to discriminate the influence of the low molecular weight ligands of the enzyme on the different sites of the tRNA - enzyme interaction.

Full text

PDF
1577

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanquet S., Iwatsubo M., Waller J. P. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. 1. Fluorescence studies on tRNAMet binding as a function of ligands, ions and pH. Eur J Biochem. 1973 Jul 2;36(1):213–226. doi: 10.1111/j.1432-1033.1973.tb02903.x. [DOI] [PubMed] [Google Scholar]
  2. Budker V. G., Knorre D. G., Kravchenko V. V., Lavrik O. I., Nevinsky G. A., Teplova N. M. Photoaffinity reagents for modification of aminoacyl-tRNA synthetases. FEBS Lett. 1974 Dec 15;49(2):159–162. doi: 10.1016/0014-5793(74)80501-6. [DOI] [PubMed] [Google Scholar]
  3. Cassio D., Lemoine F., Waller J. P., Sandrin E., Boissonnas R. A. Selective inhibition of aminoacyl ribonucleic acid synthetases by aminoalkyl adenylates. Biochemistry. 1967 Mar;6(3):827–836. doi: 10.1021/bi00855a024. [DOI] [PubMed] [Google Scholar]
  4. Gorshkova I. I., Lavrik O. I. The influence of the ATP, amino acids and their analogs on the kinetics of the affinity labelling of the phenylalanyl-tRNA synthetase. FEBS Lett. 1975 Mar 15;52(1):135–138. doi: 10.1016/0014-5793(75)80655-7. [DOI] [PubMed] [Google Scholar]
  5. Gorshova I. I., Lavrik O. I. Afinnaia modifikatsiia fenilalanil-tRNK-sintetazy v prisutstvii legandov. Mol Biol (Mosk) 1975 Nov-Dec;9(6):887–892. [PubMed] [Google Scholar]
  6. Ikehara M., Uesugi S. Studies on nucleosides and nucleotides. 38. Synthesis of 8-bromoadenosine nucleotides. Chem Pharm Bull (Tokyo) 1969 Feb;17(2):348–354. doi: 10.1248/cpb.17.348. [DOI] [PubMed] [Google Scholar]
  7. Kim S. H., Sussman J. L., Suddath F. L., Quigley G. J., McPherson A., Wang A. H., Seeman N. C., RICH A. The general structure of transfer RNA molecules. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4970–4974. doi: 10.1073/pnas.71.12.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Kosakowski H. M., Holler E. Phenylalanyl-tRNA synthetase from Escherichia coli K10. Synergistic coupling between the sites for binding of L-phenylalanine and ATP. Eur J Biochem. 1973 Oct 5;38(2):274–282. doi: 10.1111/j.1432-1033.1973.tb03059.x. [DOI] [PubMed] [Google Scholar]
  9. Loftfield R. B., Eigner E. A. Mechanism of action of amino acid transfer ribonucleic acid ligases. J Biol Chem. 1969 Apr 10;244(7):1746–1754. [PubMed] [Google Scholar]
  10. Penzer G. R., Plumbridge J. A. Kinetics of pyrophosphate-ATP exchange catalysed by L-tryptophan: tRNA ligase from Escherichia coli. Eur J Biochem. 1974 Jun 1;45(1):291–295. doi: 10.1111/j.1432-1033.1974.tb03553.x. [DOI] [PubMed] [Google Scholar]
  11. Roy K. L., Söll D. Fractionation of Escherichia coli transfer RNA on benzoylated DEAE-cellulose. Biochim Biophys Acta. 1968 Jul 23;161(2):572–574. doi: 10.1016/0005-2787(68)90137-8. [DOI] [PubMed] [Google Scholar]
  12. Stulberg M. P. The isolation and properties of phenylalanyl ribonucleic acid synthetase from Escherichia coli B. J Biol Chem. 1967 Mar 10;242(5):1060–1064. [PubMed] [Google Scholar]
  13. Yarus M., Berg P. On the properties and utility of a membrane filter assay in the study of isoleucyl-tRNA synthetase. Anal Biochem. 1970 Jun;35(2):450–465. doi: 10.1016/0003-2697(70)90207-1. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES