Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Jul;3(7):1703–1713. doi: 10.1093/nar/3.7.1703

CD spectra of 5-methyl-2-thiouridine in tRNA-Met-f from an extreme thermophile.

K Watanabe, T Oshima, S Nishimura
PMCID: PMC343029  PMID: 967669

Abstract

5-Methyl-2-thiouridine (S) in tRNA-Met-f from an extreme thermophile is located in the TpsiC region, replacing T, and has a positive CD band centered at 310 nm. Upon heating, the profiles of the change in this band were similar to the UV melting profiles of the change monitored at 260 nm. This strongly suggests a close relation between heat denaturation of the tRNA and the conformation of the S base. Oligonucleotides containing S showed negative CD bands at 320-330 nm, like the monomer S itself, but when the 3'-2/5 fragment containing S formed a complex with the complementary 5'-3/5 fragment, a positive CD band appeared at 310 nm. These results suggest that combination of the TpsiC loop containing S with the hU loop is necessary for the positive band of S at 310 nm. S may serve to strengthen the association of the TpsiC loop with the hU loop in tRNA of the thermophile.

Full text

PDF
1703

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blum A. D., Uhlenbeck O. C., Tinoco I., Jr Circular dichroism study of nine species of transfer ribonucleic acid. Biochemistry. 1972 Aug 15;11(17):3248–3256. doi: 10.1021/bi00767a019. [DOI] [PubMed] [Google Scholar]
  2. Bolton P. H., Kearns D. R. NMR evidence for common tertiary structure base pairs in yeast and E. coli tRNA. Nature. 1975 May 22;255(5506):347–349. doi: 10.1038/255347a0. [DOI] [PubMed] [Google Scholar]
  3. Bähr W., Faerber P., Scheit K. H. The effects of thioketo substitution upon uracil-adenine interactions in polyribonucleotides. Synthesis and properties of poly (2-thiouridylic acid) and poly(2,4-dithiouridylic acid). Eur J Biochem. 1973 Mar 15;33(3):535–544. doi: 10.1111/j.1432-1033.1973.tb02713.x. [DOI] [PubMed] [Google Scholar]
  4. Caron M., Dugas H. A spin label study of the thermal unfolding of secondary and tertiary structure in E. colic transfer RNAs. Nucleic Acids Res. 1976 Jan;3(1):35–47. doi: 10.1093/nar/3.1.35. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Caron M., Dugas H. Specific spin-labeling of transfer ribonucleic acid molecules. Nucleic Acids Res. 1976 Jan;3(1):19–34. doi: 10.1093/nar/3.1.19. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Daniel W. E., Jr, Cohn M. Proton nuclear magnetic resonance of spin-labeled Escherichia coli tRNAf1MET. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2582–2586. doi: 10.1073/pnas.72.7.2582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Hara H., Horiuchi T., Saneyoshi M., Nishimura S. 4-Thiouridine-specific spin-labeling of E. coli transfer RNA. Biochem Biophys Res Commun. 1970 Jan 23;38(2):305–311. doi: 10.1016/0006-291x(70)90713-8. [DOI] [PubMed] [Google Scholar]
  8. Hoffman B. M., Schofield P., Rich A. Spin-labeled transfer RNA. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1195–1202. doi: 10.1073/pnas.62.4.1195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Kan L. S., Ts'o P. O., von der Haar F., Sprinzl M., Cramer F. NMR study on the methyl and methylene proton resonances of tRNA Phe yeast. Biochem Biophys Res Commun. 1974 Jul 10;59(1):22–29. doi: 10.1016/s0006-291x(74)80168-3. [DOI] [PubMed] [Google Scholar]
  10. Kastrup R. V., Schmidt P. G. 1H nuclear magnetic resonance of modified bases of valine transfer ribonucleic acid (Escherichia coli). A direct monitor of sequential thermal unfolding. Biochemistry. 1975 Aug 12;14(16):3612–3618. doi: 10.1021/bi00687a015. [DOI] [PubMed] [Google Scholar]
  11. Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
  12. Kim S. H., Sussman J. L., Suddath F. L., Quigley G. J., McPherson A., Wang A. H., Seeman N. C., RICH A. The general structure of transfer RNA molecules. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4970–4974. doi: 10.1073/pnas.71.12.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Koehler K. M., Schmidt P. G. NMR study of the modified base resonances of tRNA tyr- coli . Biochem Biophys Res Commun. 1973 Jan 23;50(2):370–376. doi: 10.1016/0006-291x(73)90850-4. [DOI] [PubMed] [Google Scholar]
  14. Ladner J. E., Jack A., Robertus J. D., Brown R. S., Rhodes D., Clark B. F., Klug A. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4414–4418. doi: 10.1073/pnas.72.11.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lightfoot D. R., Wong K. L., Kearns D. R., Reid B. R., Shulman R. G. Assignment of the low field proton nuclear magnetic resonance spectrum of yeast phenylalanine transfer RNA to specific base pairs. J Mol Biol. 1973 Jun 25;78(1):71–89. doi: 10.1016/0022-2836(73)90429-4. [DOI] [PubMed] [Google Scholar]
  16. Maelicke A., von der Haar F., Sprinzl M., Cramer F. The structure of the anticodon loop of tRNAPhe from yeast as deduced from spectroscopic studies on oligonucleotides. Biopolymers. 1975 Jan;14(1):155–171. doi: 10.1002/bip.1975.360140112. [DOI] [PubMed] [Google Scholar]
  17. Mazumdar S. K., Saenger W. Molecular structure of poly-2-thiouridylic acid, a double helix with non-equivalent polynucleotide chains. J Mol Biol. 1974 May 15;85(2):213–219. doi: 10.1016/0022-2836(74)90361-1. [DOI] [PubMed] [Google Scholar]
  18. McIntosh A. R., Caron M., Dugas H. A specific spin labeling of the anticodon of E. coli tRNA-Glu. Biochem Biophys Res Commun. 1973 Dec 19;55(4):1356–1363. doi: 10.1016/s0006-291x(73)80043-9. [DOI] [PubMed] [Google Scholar]
  19. Quigley G. J., Wang A. H., Seeman N. C., Suddath F. L., Rich A., Sussman J. L., Kim S. H. Hydrogen bonding in yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4866–4870. doi: 10.1073/pnas.72.12.4866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Reeves R. H., Cantor C. R., Chambers R. W. Effect of magnesium ions on the conformation of two highly purified yeast alanine transfer ribonucleic acids. Biochemistry. 1970 Sep 29;9(20):3993–4002. doi: 10.1021/bi00822a019. [DOI] [PubMed] [Google Scholar]
  21. Reid B. R., Ribeiro N. S., Gould G., Robillard G., Hilbers C. W., Shulman R. G. Tertiary hydrogen bonds in the solution structure of transfer RNA. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2049–2053. doi: 10.1073/pnas.72.6.2049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  23. Saneyoshi M., Anami T., Nishimura S., Samejima T. The change in optical activity of amino acid-specific Escherichia coli transfer RNA containing 4-thiouridylate by chemical modifications. Arch Biochem Biophys. 1972 Oct;152(2):677–684. doi: 10.1016/0003-9861(72)90264-0. [DOI] [PubMed] [Google Scholar]
  24. Saneyoshi M., Nishimura S. Selective modification of 4-thiouridylate residue in Escherichia coli transfer RNA with cyanogen bromide. Biochim Biophys Acta. 1970 Apr 15;204(2):389–399. doi: 10.1016/0005-2787(70)90158-9. [DOI] [PubMed] [Google Scholar]
  25. Schofield P., Hoffman B. M., Rich A. Spin-labeling studies of aminoacyl transfer ribonucleic acid. Biochemistry. 1970 Jun 9;9(12):2525–2533. doi: 10.1021/bi00814a020. [DOI] [PubMed] [Google Scholar]
  26. Scott J. F., Schofield P. Some observations on the near ultraviolet circular dichroism of tRNA from E. coli. Proc Natl Acad Sci U S A. 1969 Nov;64(3):931–938. doi: 10.1073/pnas.64.3.931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Shulman R. G., Hilbers C. W. Ring-current shifts in the 300 MHz nuclear magnetic resonance spectra of six purified transfer RNA molecules. J Mol Biol. 1973 Jun 25;78(1):57–69. doi: 10.1016/0022-2836(73)90428-2. [DOI] [PubMed] [Google Scholar]
  28. Shulman R. G., Hilbers C. W., Wong Y. P., Wong K. L., Lightfoot D. R., Reid B. R., Kearns D. R. Determination of secondary and tertiary structural features of transfer RNA molecules in solution by nuclear magnetic resonance. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2042–2045. doi: 10.1073/pnas.70.7.2042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Singhal R. P. Chemical probe of structure and function of transfer ribonucleic acids. Biochemistry. 1974 Jul 2;13(14):2924–2932. doi: 10.1021/bi00711a023. [DOI] [PubMed] [Google Scholar]
  30. Takasaki Y., Imahori K. CD and fluorescence studies of tRNAPhe from baker's yeast. J Biochem. 1973 Sep;74(3):513–517. doi: 10.1093/oxfordjournals.jbchem.a130271. [DOI] [PubMed] [Google Scholar]
  31. Ueda T., Nishino H. Optical properties of thiopyrimidine nucleosides. Chem Pharm Bull (Tokyo) 1969 May;17(5):920–926. doi: 10.1248/cpb.17.920. [DOI] [PubMed] [Google Scholar]
  32. Watanabe K., Imahori K. The conformation difference between tRNA Met f and formylmethionyl-tRNA Met f from E. coli. Biochem Biophys Res Commun. 1971 Oct 15;45(2):488–494. doi: 10.1016/0006-291x(71)90845-x. [DOI] [PubMed] [Google Scholar]
  33. Watanabe K., Oshima T., Saneyoshi M., Nishimura S. Replacement of ribothymidine by 5-methyl-2-thiouridine in sequence GT psi C in tRNA of an extreme thermophile. FEBS Lett. 1974 Jul 1;43(1):59–63. doi: 10.1016/0014-5793(74)81105-1. [DOI] [PubMed] [Google Scholar]
  34. Willick G. E., Kay C. M. Magnesium-induced conformational change in transfer ribonucleic acid as measured by circular dichroism. Biochemistry. 1971 Jun 8;10(12):2216–2222. doi: 10.1021/bi00788a005. [DOI] [PubMed] [Google Scholar]
  35. Willick G., Oikawa K., Kay C. M. Circular dichroism studies on the conformation of transfer ribonucleic acid in the presence of different divalent cations. Biochemistry. 1973 Feb 27;12(5):899–904. doi: 10.1021/bi00729a017. [DOI] [PubMed] [Google Scholar]
  36. Wintermeyer W., Zachau H. G. A specific chemical chain scission of tRNA at 7-methylguanosine. FEBS Lett. 1970 Dec;11(3):160–164. doi: 10.1016/0014-5793(70)80518-x. [DOI] [PubMed] [Google Scholar]
  37. Wong K. L., Kearns D. R. NMR evidence for tertiary structure base pair in E. coli tRNA involving S4U8. Nature. 1974 Dec 20;252(5485):738–739. doi: 10.1038/252738a0. [DOI] [PubMed] [Google Scholar]
  38. Wong K. L., Wong Y. P., Kearns D. R. Investigation of the thermal unfolding of secondary and tertiary structure in E. coli tRNAfMet by high-resolution Nmr. Biopolymers. 1975 Apr;14(4):749–762. doi: 10.1002/bip.1975.360140407. [DOI] [PubMed] [Google Scholar]
  39. Wong Y. P., Kearns D. R., Reid B. R., Shulman R. G. Investigation of exchangeable protons and the extent of base pairings in yeast phenylalanine transfer RNA by high resolution nuclear magnetic resonance. J Mol Biol. 1972 Dec 30;72(3):725–740. doi: 10.1016/0022-2836(72)90187-8. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES