Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Aug;3(8):1857–1873. doi: 10.1093/nar/3.8.1857

Circular dichroism studies of ethidium bromide binding to the isolated nucleolus.

C H Huang, R Baserga
PMCID: PMC343045  PMID: 967680

Abstract

Circular dichroism in the 300-360 nm region and fluorescence induced by intercaltating binding of ethidum bromide to both DNA and RNA components were studied in isolated HeLa nucleoli. Both DNA and RNA compoents contribute to the induced dichroic elliticity. Digestion of nucleoli by RNase or DNase shows that most of the induced ellipticity comes from the DNA component. In nucleoli with an RNA/DNA = 0.8/1.0 the RNA component gives only 20% of the total ellipticity when measured at an ethidium bromide/DNA = 0.25. Spectro-fluorometric titration shows that ethidium bromide intercalates mostly into DNA in nucleoli. Both circular dichroism and fluorescence studies indicate that both DNA and RNA components in isolated nucleoli are less accessible to intercalating binding by ethidium bromide when compared to purified nucleolar DNA, DNA in chromatin or purified ribosomal RNA. Circular dichroic measurements of intercalating binding of ethidium bromide to to nucleoli may be used to study changes in nucleoli under different physiological or pathological conditions.

Full text

PDF
1857

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adler A. J., Greenfield N. J., Fasman G. D. Circular dichroism and optical rotatory dispersion of proteins and polypeptides. Methods Enzymol. 1973;27:675–735. doi: 10.1016/s0076-6879(73)27030-1. [DOI] [PubMed] [Google Scholar]
  2. Aktipis S., Kindelis A. Optical properties of the deoxyribonucleic acid-ethidium bromide complex. Effect of salt. Biochemistry. 1973 Mar 13;12(6):1213–1221. doi: 10.1021/bi00730a031. [DOI] [PubMed] [Google Scholar]
  3. Aktipis S., Martz W. W., Kindelis A. Thermal denaturation of the DNA-ethidium complex. Redistribution of the intercalated dye during melting. Biochemistry. 1975 Jan 28;14(2):326–331. doi: 10.1021/bi00673a019. [DOI] [PubMed] [Google Scholar]
  4. Alberghina F. A., Sturani E., Gohlke J. R. Levels and rates of synthesis of ribosomal ribonucleic acid, transfer ribonucleic acid, and protein in Neurospora crassa in different steady states of growth. J Biol Chem. 1975 Jun 25;250(12):4381–4388. [PubMed] [Google Scholar]
  5. Amalric F., Zalta J. P. Rat hepatoma cells nucleolar DNA. II. A possible model of nucleolar DNA organisation. Nucleic Acids Res. 1975 Aug;2(8):1321–1328. doi: 10.1093/nar/2.8.1321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Angerer L. M., Georghiou S., Moudrianakis E. N. Studies on the structure of deoxyribonucleoproteins. Spectroscopic characterization of the ethidium bromide binding sites. Biochemistry. 1974 Mar 12;13(6):1075–1082. doi: 10.1021/bi00703a003. [DOI] [PubMed] [Google Scholar]
  7. Bailey R. P., Rudert W. A., Short J., Lieberman I. Nucleolar changes in liver before the onset of deoxyribonucleic acid replication. J Biol Chem. 1975 Jun 10;250(11):4305–4309. [PubMed] [Google Scholar]
  8. DUYSENS L. N. The flattening of the absorption spectrum of suspensions, as compared to that of solutions. Biochim Biophys Acta. 1956 Jan;19(1):1–12. doi: 10.1016/0006-3002(56)90380-8. [DOI] [PubMed] [Google Scholar]
  9. Dalgleish D. G., Peacocke A. R. The circular dichroism in the ultraviolet of aminoacridines and ethidium bromide bound to DNA. Biopolymers. 1971 Oct;10(10):1853–1863. doi: 10.1002/bip.360101008. [DOI] [PubMed] [Google Scholar]
  10. Epifanova O. I., Abuladze M. K., Zosimovskaya A. I. Effects of low concentrations of actinomycin D on the initiation of DNA synthesis in rapidly proliferating and stimulated cell cultures. Exp Cell Res. 1975 Apr;92(1):23–30. doi: 10.1016/0014-4827(75)90632-1. [DOI] [PubMed] [Google Scholar]
  11. FLECK A., MUNRO H. N. The precision of ultraviolet absorption measurements in the Schmidt-Thannhauser procedure for nucleic acid estimation. Biochim Biophys Acta. 1962 May 14;55:571–583. doi: 10.1016/0006-3002(62)90836-3. [DOI] [PubMed] [Google Scholar]
  12. Gordon D. J. Mie scattering by optically active particles. Biochemistry. 1972 Feb 1;11(3):413–420. doi: 10.1021/bi00753a018. [DOI] [PubMed] [Google Scholar]
  13. Jockusch B. M., Walker I. O. The preparation and preliminary characterisation of chromatin from the slime mould Physarum polycephalum. Eur J Biochem. 1974 Oct 2;48(2):417–425. doi: 10.1111/j.1432-1033.1974.tb03782.x. [DOI] [PubMed] [Google Scholar]
  14. Lawrence J. J., Louis M. Ethidium bromide as a probe of chromatin structure. FEBS Lett. 1974 Mar 15;40(1):9–12. doi: 10.1016/0014-5793(74)80882-3. [DOI] [PubMed] [Google Scholar]
  15. Lin J. C., Nicolini C., Baserga R. A comparative study of some properties of chromatin from normal diploid and SV-40 transformed human fibroblasts. Biochemistry. 1974 Sep 24;13(20):4127–4133. doi: 10.1021/bi00717a010. [DOI] [PubMed] [Google Scholar]
  16. Lurquin P. F. The use of intercalating dye molecules in the study of chromatin structure. Chem Biol Interact. 1974 May;8(5):303–312. doi: 10.1016/0009-2797(74)90009-x. [DOI] [PubMed] [Google Scholar]
  17. MCCONKEY E. H., HOPKINS J. W. THE RELATIONSHIP OF THE NUCLEOLUS TO THE SYNTHESIS OF RIBOSOMAL RNA IN HELA CELLS. Proc Natl Acad Sci U S A. 1964 Jun;51:1197–1204. doi: 10.1073/pnas.51.6.1197. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Moore G. P., Ringertz N. R. Localization of DNA-dependent RNA polymerase activities in fixed human fibroblasts by autoradiography. Exp Cell Res. 1973 Jan;76(1):223–228. doi: 10.1016/0014-4827(73)90439-4. [DOI] [PubMed] [Google Scholar]
  19. Nicolini C., Ajiro K., Borun T. W., Baserga R. Chromatin changes during the cell cycle of HeHa cells. J Biol Chem. 1975 May 10;250(9):3381–3385. [PubMed] [Google Scholar]
  20. Nicolini C., Baserga R. Circular dichroism and ethidium bromide binding studies of chromatin from WI-38 fibroblasts stimulated to proliferate. Chem Biol Interact. 1975 Aug;11(2):101–116. doi: 10.1016/0009-2797(75)90017-4. [DOI] [PubMed] [Google Scholar]
  21. Reeder R. H., Roeder R. G. Ribosomal RNA synthesis in isolated nuclei. J Mol Biol. 1972 Jun 28;67(3):433–441. doi: 10.1016/0022-2836(72)90461-5. [DOI] [PubMed] [Google Scholar]
  22. Richardson J. P. Mechanism of ethidium bromide inhibition of RNA polymerase. J Mol Biol. 1973 Aug 25;78(4):703–714. doi: 10.1016/0022-2836(73)90290-8. [DOI] [PubMed] [Google Scholar]
  23. SCOTT J. F., FRACCASTORO A. P., TAFT E. B. Studies in histochemistry. I. Determination of nucleic acids in microgram amounts of tissue. J Histochem Cytochem. 1956 Jan;4(1):1–10. doi: 10.1177/4.1.1. [DOI] [PubMed] [Google Scholar]
  24. Sankaran L., Pogell B. M. Differential inhibition of catabolite-sensitive enzyme induction by intercalating dyes. Nat New Biol. 1973 Oct 31;245(148):257–260. doi: 10.1038/newbio245257a0. [DOI] [PubMed] [Google Scholar]
  25. Schmid W., Sekeris C. E. Nucleolar RNA synthesis in the liver of partially hepatectomized and cortisol-treated rats. Biochim Biophys Acta. 1975 Aug 21;402(2):244–252. doi: 10.1016/0005-2787(75)90044-1. [DOI] [PubMed] [Google Scholar]
  26. Schneider A. S. Analysis of optical activity spectra of turbid biological suspensions. Methods Enzymol. 1973;27:751–767. doi: 10.1016/s0076-6879(73)27032-5. [DOI] [PubMed] [Google Scholar]
  27. Seligy V. L., Lurquin P. F. Relationship between dye binding and template activity of isolated avian chromatin. Nat New Biol. 1973 May 2;243(122):20–21. [PubMed] [Google Scholar]
  28. Simpson R. T., Sober H. A. Circular dichroism of calf liver nucleohistone. Biochemistry. 1970 Aug 4;9(16):3103–3109. doi: 10.1021/bi00818a001. [DOI] [PubMed] [Google Scholar]
  29. TSUKADA K., LIEBERMAN I. SYNTHESIS OF RIBONUCLEIC ACID BY LIVER NUCLEAR AND NUCLEOLAR PREPARATIONS AFTER PARTIAL HEPATECTOMY. J Biol Chem. 1964 Sep;239:2952–2956. [PubMed] [Google Scholar]
  30. Unuma T., Floyd L. R., Busch H. Selective removal of the perinucleolar nucleolus-associated chromatin from the isolated nucleoli of livers of thioacetamide-treated rats. Exp Cell Res. 1968 Sep;52(1):101–111. doi: 10.1016/0014-4827(68)90550-8. [DOI] [PubMed] [Google Scholar]
  31. Williams R. E., Lurquin P. F., Seligy V. L. Circular dichroism of avian-erythrocyte chromatin and ethidium bromide bound to chromatin. Eur J Biochem. 1972 Sep 25;29(3):426–432. doi: 10.1111/j.1432-1033.1972.tb02005.x. [DOI] [PubMed] [Google Scholar]
  32. Williams R. E., Seligy V. L. The interaction of ethidium bromide with synthetic polydeoxyribonucleic acids. Effect of base composition and sequence on the induced circular dichroism spectra. Can J Biochem. 1974 Apr;52(4):281–287. doi: 10.1139/o74-044. [DOI] [PubMed] [Google Scholar]
  33. Zardi L., Baserga R. Ribosomal RNA synthesis in WI-38 cells stimulated to proliferate. Exp Mol Pathol. 1974 Feb;20(1):69–77. doi: 10.1016/0014-4800(74)90044-6. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES