Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Aug;3(8):1937–1945. doi: 10.1093/nar/3.8.1937

Conversion of Escherichia coli RNA polymerase to a template independent enzyme.

R K Berge, L Haarr, A P Nygaard
PMCID: PMC343050  PMID: 787928

Abstract

Preparations of RNA polymerase (E.C.2.7.7.6) from uninfected Escherichia coli, T4 infected Escherichia coli, and Acinetobacter calcoaceticus when centrifuged in sucrose gradients in the absence of magnesium ions gave rise to five peaks, all of which were able to form polymers from ribonucleoside 5'-triphosphates in the absence of template or primer. All of the peaks obtained from the Escherichia coli enzyme appeared to contain the subunit alpha and beta and, in addition, polypeptides which appeared to be derived from the subunit beta.

Full text

PDF
1937

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham K. A., Andersen K. J., Rognes A. Studies on deoxyribonucleic acid-dependent ribonucleic acid polymerase from Escherichia coli. Variations of the enzyme activity during growth. Biochem J. 1972 Sep;129(2):291–299. doi: 10.1042/bj1290291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Burgess R. R. RNA polymerase. Annu Rev Biochem. 1971;40:711–740. doi: 10.1146/annurev.bi.40.070171.003431. [DOI] [PubMed] [Google Scholar]
  3. Burgess R. R. Separation and characterization of the subunits of ribonucleic acid polymerase. J Biol Chem. 1969 Nov 25;244(22):6168–6176. [PubMed] [Google Scholar]
  4. Fukasawa H., Mizuochi T. DNA-dependent poly (G) synthesizing activities in DNA-dependent RNA polymerase fractions from cauliflower inflorescence. Biochem Biophys Res Commun. 1974 May 20;58(2):405–411. doi: 10.1016/0006-291x(74)90379-9. [DOI] [PubMed] [Google Scholar]
  5. Fukuda R., Ishihama A. Subunits of RNA polymerase in function and structure; Maturation in vitro of core enzyme from Escherichia coli. J Mol Biol. 1974 Aug 15;87(3):523–540. doi: 10.1016/0022-2836(74)90102-8. [DOI] [PubMed] [Google Scholar]
  6. Fukuda R., Iwakura Y., Ishihama A. Heterogeneity of RNA polymerase in Escherichia coli. I. A new holoenzyme containing a new sigma factor. J Mol Biol. 1974 Mar;83(3):353–367. doi: 10.1016/0022-2836(74)90284-8. [DOI] [PubMed] [Google Scholar]
  7. Ishihama A., Fukuda R., Ito K. Subunits of RNA polymerase in function and structure. IV. Enhancing role of sigma in the subunit assembly of Escherichia coli RNA polymerase. J Mol Biol. 1973 Sep 5;79(1):127–136. doi: 10.1016/0022-2836(73)90274-x. [DOI] [PubMed] [Google Scholar]
  8. Ishihama A., Ito K. Subunits of RNA polymerase in function and structure. II. Reconstitution of Escherichia coli RNA polymerase from isolated subunits. J Mol Biol. 1972 Dec 14;72(1):111–123. doi: 10.1016/0022-2836(72)90073-3. [DOI] [PubMed] [Google Scholar]
  9. Ishihama A., Kameyama T. The molecular mechanism of the enzymic reaction in RNA synthesis. Biochim Biophys Acta. 1967 May 30;138(3):480–498. doi: 10.1016/0005-2787(67)90545-x. [DOI] [PubMed] [Google Scholar]
  10. Ishihama A. Subunits of E. coli RNA polymerase in function and structure. J Cell Physiol. 1969 Oct;74(2 Suppl):223–224. doi: 10.1002/jcp.1040740423. [DOI] [PubMed] [Google Scholar]
  11. Ishihama A. Subunits of ribonucleic acid polymerase in function and structure. I. Reversible dissociations of Escherichia coli ribonucleic acid polymerase. Biochemistry. 1972 Mar 28;11(7):1250–1258. doi: 10.1021/bi00757a021. [DOI] [PubMed] [Google Scholar]
  12. Ito K., Ishihama A. Subunits of RNA polymerase in function and structure. 3. Accumulation of the intermediate alpha 2beta in the subunit assembly of Escherichia coli RNA polymerase by treatment with cyanate. J Mol Biol. 1973 Sep 5;79(1):115–125. doi: 10.1016/0022-2836(73)90273-8. [DOI] [PubMed] [Google Scholar]
  13. Iwakura Y., Fukuda R., Ishihama A. Heterogeneity of RNA polymerase in Escherichia coli. II. Polyadenylate-polyuridylate synthesis by holoenzyme II. J Mol Biol. 1974 Mar;83(3):369–378. doi: 10.1016/0022-2836(74)90285-x. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Lowe P. A., Malcolm A. D. Structural properties of Escherichia coli RNA polymerase Subunits. Eur J Biochem. 1976 Apr 15;64(1):177–188. doi: 10.1111/j.1432-1033.1976.tb10286.x. [DOI] [PubMed] [Google Scholar]
  16. Oasa S., Tsugita A., Mii S. Isolation and characterization of poly A polymerase from cell debris of E. coli. Nat New Biol. 1972 Nov 8;240(97):39–41. doi: 10.1038/newbio240039a0. [DOI] [PubMed] [Google Scholar]
  17. Oasa S., Tsugita A. Poly A synthesizing activity in a constitutive subunit of RNA polymerase. Nat New Biol. 1972 Nov 8;240(97):35–38. doi: 10.1038/newbio240035a0. [DOI] [PubMed] [Google Scholar]
  18. Olsnes S., Hauge J. G. Amino acid control of RNA synthesis in T4-infected Escherichia coli. Eur J Biochem. 1968 Dec;7(1):128–136. doi: 10.1111/j.1432-1033.1968.tb19583.x. [DOI] [PubMed] [Google Scholar]
  19. Richardson J. P. Some physical properties of RNA polymerase. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1616–1623. doi: 10.1073/pnas.55.6.1616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sethi V. S., Zillig W., Bauer H. Dissociation of DNA-dependent RNA-polymerase from E. coli in lithium chloride. FEBS Lett. 1970 Feb 25;6(4):339–342. doi: 10.1016/0014-5793(70)80093-x. [DOI] [PubMed] [Google Scholar]
  21. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES