Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Aug;3(8):1973–1984. doi: 10.1093/nar/3.8.1973

Conformational analysis of polynucleotides. I. The favorable left-handed helical model for the poly(8,2'-S-cycloadenylic acid) with high anti conformation.

S Fujii, K Tomita
PMCID: PMC343053  PMID: 184437

Abstract

1) Energy calculations have shown that poly (8,2'-S-cycloadenylic aicd) can form left-handed helices owing to the high anti conformation. 2) Two favorable left-handed helices are characterized by axial translation per residue (Z=4.3 and 3.6A) and by rotations per residue (theta= 40 degrees and -25 degrees). 3) The proposed helical models might be stable in aqueous solution and is well explicable of the optical property of this compound.

Full text

PDF
1973

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Chandrasekaran R., Hukins D. W., Smith P. J., Watts L. Structural details of double-helix observed for DNAs containing alternating purine and pyrimidine sequences. J Mol Biol. 1974 Sep 15;88(2):523–533. doi: 10.1016/0022-2836(74)90499-9. [DOI] [PubMed] [Google Scholar]
  2. Arnott S., Hukins D. W., Dover S. D. Optimised parameters for RNA double-helices. Biochem Biophys Res Commun. 1972 Sep 26;48(6):1392–1399. doi: 10.1016/0006-291x(72)90867-4. [DOI] [PubMed] [Google Scholar]
  3. Brennan T., Sundaralingam M. Molecular structure of 2,2'-anhydro-1- -D-arabinofuranosyl cytosine hydrochloride (cyclo ara-C): a highly rigid nucleoside. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1348–1353. doi: 10.1016/0006-291x(73)90649-9. [DOI] [PubMed] [Google Scholar]
  4. Broch H., Cornillon R., Lespinasse J. N., Vasilescu D. Influence of the sugar configuration on the structure of RNA by conformational analysis of the ribose-phosphate unit. Biopolymers. 1975 Apr;14(4):695–713. doi: 10.1002/bip.1975.360140403. [DOI] [PubMed] [Google Scholar]
  5. Bugg C. E., Thomas J. M., Sundaralingam M., Rao S. T. Stereochemistry of nucleic acids and their constituents. X. Solid-state base-stacking patterns in nucleic acid constituents and polynucleotides. Biopolymers. 1971;10(1):175–219. doi: 10.1002/bip.360100113. [DOI] [PubMed] [Google Scholar]
  6. Ikehara M., Tezuka T. Polynucleotides. XXVI. Complex formation of polynucleotides derived from formycin and laurusin with cyclonucleoside oligonucleotides. Nucleic Acids Res. 1974 Jul;1(7):907–917. doi: 10.1093/nar/1.7.907. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Ikehara M., Uesugi S., Yano J. Left-handed helical polynucleotides with D-sugar phosphodiester backbones. Nat New Biol. 1972 Nov 1;240(96):16–17. doi: 10.1038/newbio240016a0. [DOI] [PubMed] [Google Scholar]
  8. Ikehara M., Uesugi S., Yasumoto M. A highly stacked dinucleoside monophosphate derived from adenine 8-cyclonucleosides. J Am Chem Soc. 1970 Jul 29;92(15):4735–4736. doi: 10.1021/ja00718a046. [DOI] [PubMed] [Google Scholar]
  9. Johnson W. C., Jr, Itzkowitz M. S., Tinoco I., Jr Circular dichroism of polynucleotides: dimers as a function of conformation. Biopolymers. 1972 Jan;11(1):225–234. doi: 10.1002/bip.1972.360110117. [DOI] [PubMed] [Google Scholar]
  10. Kashitani Y., Fujii S., Tomita K. Crystal and molecular structure of 6,2'-anhydro-1-beta-D-arabinofuranosylctyosine. Biochem Biophys Res Commun. 1976 Apr 19;69(4):1028–1031. doi: 10.1016/0006-291x(76)90475-7. [DOI] [PubMed] [Google Scholar]
  11. Kondo N. S., Fang K. N., Miller P. S., Ts'o P. O. Influence of the furanose on the conformation of adenine dinucleoside monophosphates in solution. Biochemistry. 1972 May 23;11(11):1991–2003. doi: 10.1021/bi00761a001. [DOI] [PubMed] [Google Scholar]
  12. Lakshiminarayanan A. V., Sasisekharan V. Stereochemistry of nucleic acids and polynucleotides. II. Allowed conformations of the monomer unit for different ribose puckerings. Biochim Biophys Acta. 1970 Mar 19;204(1):49–59. doi: 10.1016/0005-2787(70)90489-2. [DOI] [PubMed] [Google Scholar]
  13. Olson W. K. The spatial configuration of ordered polynucleotide chains. II. The poly(rA) helix. Nucleic Acids Res. 1975 Nov;2(11):2055–2068. doi: 10.1093/nar/2.11.2055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Renugopalakrishnan V., Lakshminarayanan A. V., Sasisekharan V. Stereochemistry of nucleic acids and polynucleotides. 3. Electronic charge distribution. Biopolymers. 1971;10(7):1159–1167. doi: 10.1002/bip.360100707. [DOI] [PubMed] [Google Scholar]
  15. Saenger W., Riecke J., Suck D. A structural model for the polyadenylic acid single helix. J Mol Biol. 1975 Apr 25;93(4):529–534. doi: 10.1016/0022-2836(75)90244-2. [DOI] [PubMed] [Google Scholar]
  16. Yathindra N., Sundaralingam M. Analysis of the possible helical structures of nucleic acids and polynucleotides. Application of (n-h) plots. Nucleic Acids Res. 1976 Mar;3(3):729–747. doi: 10.1093/nar/3.3.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yathindra N., Sundaralingam M. Backbone conformations in secondary and tertiary structural units of nucleic acids. Constraint in the phosphodiester conformation. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3325–3328. doi: 10.1073/pnas.71.9.3325. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES