Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Aug;3(8):2129–2142. doi: 10.1093/nar/3.8.2129

Increased isoleucine acceptance by sulfur-deficient transfer RNA from Escherichia coli.

C L Harris, F Marashi, E B Titchener
PMCID: PMC343067  PMID: 787931

Abstract

Sulfur-deficient tRNA, isolated from Escherichia coli HfrC, rel-, met-, cys-, lambda, after cysteine starvation, was found to have an increased acceptance of isoleucine in proportion to the deficiency of 4-thiouridine. Isoleucine acceptance was not altered in the presence of other amino acids of CTP, and the higher acceptance was observed over a wide range of magnesium, isoleucine, tRNA and enzyme concentrations. The Vmax value for sulfur-deficient tRNA was more than three times greater than observed for normal tRNA. Methylated albumin kieselguhr (MAK) chromatography revealed three isoacceptor peak for normal tRNA, while sulfur-deficient tRNA was missing tRNAile, and exhibited a larger, shifted peaks for tRNA normal tRNA, while sulfur-deficient tRNA was missing tRNAille 2, and exhibited a large shifted peak for tRNAile 3 . Treatment with crude RNA sulfurtransferase both lowered the isoleucine acceptance for sulfur-deficient tRNA to that seen for normal tRNA, and restored the missing isoacceptor on MAK. The possibility that thionucleotides may play a role in the aminoacylation of tRNAile in E. coli is discussed.

Full text

PDF
2129

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agris P. F., Armstrong D. J., Schäfer K. P., Söll D. Maturation of a hypermodified nucleoside in transfer RNA. Nucleic Acids Res. 1975 May;2(5):691–698. doi: 10.1093/nar/2.5.691. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Agris P. F., Söll D., Seno T. Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry. 1973 Oct 23;12(22):4331–4337. doi: 10.1021/bi00746a005. [DOI] [PubMed] [Google Scholar]
  3. Anderson E. H. Growth Requirements of Virus-Resistant Mutants of Escherichia Coli Strain "B". Proc Natl Acad Sci U S A. 1946 May;32(5):120–128. doi: 10.1073/pnas.32.5.120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baldwin A. N., Berg P. Purification and properties of isoleucyl ribonucleic acid synthetase from Escherichia coli. J Biol Chem. 1966 Feb 25;241(4):831–838. [PubMed] [Google Scholar]
  5. Blank H. U., Söll D. The nucleotide sequence of two leucine tRNA species from Escherichia coli K12. Biochem Biophys Res Commun. 1971 Jun 4;43(5):1192–1197. doi: 10.1016/0006-291x(71)90589-4. [DOI] [PubMed] [Google Scholar]
  6. Carbon J. A., Hung L., Jones D. S. A reversible oxidative in activation of specific transfer RNA species. Proc Natl Acad Sci U S A. 1965 May;53(5):979–986. doi: 10.1073/pnas.53.5.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Carbon J., David H. Studies on the thionucleotides in transfer ribonucleic acid. Addition of N-ethylmaleimide and formation of mixed disulfides with thiol compounds. Biochemistry. 1968 Nov;7(11):3851–3858. doi: 10.1021/bi00851a010. [DOI] [PubMed] [Google Scholar]
  8. Eldred E. W., Schimmel P. R. Investigation of the transfer of amino acid from a transfer ribonucleic acid synthetase-aminoacyl adenylate complex to transfer ribonucleic acid. Biochemistry. 1972 Jan 4;11(1):17–23. doi: 10.1021/bi00751a004. [DOI] [PubMed] [Google Scholar]
  9. Harada F., Nishimura S. Purification and characterization of AUA specific isoleucine transfer ribonucleic acid from Escherichia coli B. Biochemistry. 1974 Jan 15;13(2):300–307. doi: 10.1021/bi00699a011. [DOI] [PubMed] [Google Scholar]
  10. Harris C. L., Titchener E. B., Cline A. L. Sulfur-deficient transfer ribonucleic acid in a cysteine-requiring, "relaxed" mutant of Escherichia coli. J Bacteriol. 1969 Dec;100(3):1322–1327. doi: 10.1128/jb.100.3.1322-1327.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris C. L., Titchener E. B. Sulfur-deficient transfer ribonucleic acid. The natural substrate for ribonucleic acid sulfurtransferase from Escherichia coli. Biochemistry. 1971 Nov;10(23):4207–4212. doi: 10.1021/bi00799a008. [DOI] [PubMed] [Google Scholar]
  12. Hayward R. S., Weiss S. B. RNA thiolase: the enzymatic transfer of sulfur from cysteine to sRNA in Escherichia coli extracts. Proc Natl Acad Sci U S A. 1966 May;55(5):1161–1168. doi: 10.1073/pnas.55.5.1161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ish-Horowicz D., Clark B. F. The nucleotide sequence of a serine transfer ribonucleic acid from Escherichia coli. J Biol Chem. 1973 Oct 10;248(19):6663–6673. [PubMed] [Google Scholar]
  14. Kelmers A. D., Novelli G. D., Stulberg M. P. Separation of transfer ribonucleic acids by reverse phase chromatography. J Biol Chem. 1965 Oct;240(10):3979–3983. [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Lipsett M. N. The isolation of 4-thiouridylic acid from the soluble ribonucleic acid of Escherichia coli. J Biol Chem. 1965 Oct;240(10):3975–3978. [PubMed] [Google Scholar]
  17. MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
  18. Mann M. B., Huang P. C. New chromatographic form of phenylalanine transfer ribonucleic acid from Escherichia coli growing exponentially in a low-phosphate medium. J Bacteriol. 1974 Apr;118(1):209–212. doi: 10.1128/jb.118.1.209-212.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Roe B., Michael M., Dudock B. Function of N2 methylguanine in phenylalanine transfer RNA. Nat New Biol. 1973 Dec 5;246(153):135–138. doi: 10.1038/newbio246135a0. [DOI] [PubMed] [Google Scholar]
  20. Saneyoshi M., Nishimura S. Selective inactivation of amino acid acceptor and ribosome-binding activities of Escherichia coli tRNA by modification with cyanogen bromide. Biochim Biophys Acta. 1971 Aug 12;246(1):123–131. doi: 10.1016/0005-2787(71)90077-3. [DOI] [PubMed] [Google Scholar]
  21. Schaefer K. P., Altman S., Söll D. Nucleotide modification in vitro of the precursor of transfer RNA of Escherichia coli. Proc Natl Acad Sci U S A. 1973 Dec;70(12):3626–3630. doi: 10.1073/pnas.70.12.3626. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Shugart L. Effect of selective chemical modification of 4-thiouridine of phenylalanine transfer ribonucleic acid on enzyme recognition. Arch Biochem Biophys. 1972 Feb;148(2):488–495. doi: 10.1016/0003-9861(72)90167-1. [DOI] [PubMed] [Google Scholar]
  23. Waters L. C., Shugart L., Yang W. K., Best A. N. Some physical and biological properties of 4-thiouridine- and dihydrouridine-deficient tRNA from chloramphenicol-treated Escherichia coli. Arch Biochem Biophys. 1973 Jun;156(2):780–793. doi: 10.1016/0003-9861(73)90332-9. [DOI] [PubMed] [Google Scholar]
  24. Yarus M., Barrell B. G. The sequence of nucleotides in tRNA Ile from E. coli B. Biochem Biophys Res Commun. 1971 May 21;43(4):729–734. doi: 10.1016/0006-291x(71)90676-0. [DOI] [PubMed] [Google Scholar]
  25. Yegian C. D., Stent G. S. Differential aminoacylation of three species of isoleucine transfer RNA from Escherichia coli. J Mol Biol. 1969 Jan 14;39(1):59–71. doi: 10.1016/0022-2836(69)90333-7. [DOI] [PubMed] [Google Scholar]
  26. Ziff E. B., Fresco J. R. Chemical transformation of 4-thiouracil nucleosides to uracil and cytosine counterparts. J Am Chem Soc. 1968 Dec 18;90(26):7338–7342. doi: 10.1021/ja01028a027. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES