Abstract
X-ray fiber diffraction studies of satellite DNAs from Gecarcinus lateralis, Drosophila virilis and Mus musculus, all of which have highly repetitious base sequences but with different degrees of sequence complexity, reveal only classical polynucleotide duplex structures in contrast to some highly repetitious synthetic DNAs.
Full text
PDF






Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arnott S., Chandrasekaran R., Hukins D. W., Smith P. J., Watts L. Structural details of double-helix observed for DNAs containing alternating purine and pyrimidine sequences. J Mol Biol. 1974 Sep 15;88(2):523–533. doi: 10.1016/0022-2836(74)90499-9. [DOI] [PubMed] [Google Scholar]
- Arnott S., Selsing E. Structures for the polynucleotide complexes poly(dA) with poly (dT) and poly(dT) with poly(dA) with poly (dT). J Mol Biol. 1974 Sep 15;88(2):509–521. doi: 10.1016/0022-2836(74)90498-7. [DOI] [PubMed] [Google Scholar]
- Biro P. A., Carr-Brown A., Southern E. M., Walker P. M. Partial sequence analysis of mouse satellite DNA evidence for short range periodicities. J Mol Biol. 1975 May 5;94(1):71–86. doi: 10.1016/0022-2836(75)90405-2. [DOI] [PubMed] [Google Scholar]
- Bram S., Tougard P. Polymorphism of natural DNA. Nat New Biol. 1972 Oct 4;239(92):128–131. doi: 10.1038/newbio239128a0. [DOI] [PubMed] [Google Scholar]
- Corneo G., Ginelli E., Soave C., Bernardi G. Isolation and characterization of mouse and guinea pig satellite deoxyribonucleic acids. Biochemistry. 1968 Dec;7(12):4373–4379. doi: 10.1021/bi00852a033. [DOI] [PubMed] [Google Scholar]
- DAVIES D. R., BALDWIN R. L. X-ray studies on two synthetic DNA copolymers. J Mol Biol. 1963 Apr;6:251–255. doi: 10.1016/s0022-2836(63)80086-8. [DOI] [PubMed] [Google Scholar]
- Fry K., Poon R., Whitcome P., Idriss J., Salser W., Mazrimas J., Hatch F. Nucleotide sequence of HS-beta satellite DNA from kangaroo rat Dipodomys ordii. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2642–2646. doi: 10.1073/pnas.70.9.2642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fuller W., Hutchinson F., Spencer M., Wilkins M. H. Molecular and crystal structures of double-helical RNA. I. An x-ray diffraction study of fragmented yeast RNA and a preliminary double-helical RNA model. J Mol Biol. 1967 Aug 14;27(3):507–524. doi: 10.1016/0022-2836(67)90055-1. [DOI] [PubMed] [Google Scholar]
- Gall J. G., Atherton D. D. Satellite DNA sequences in Drosophila virilis. J Mol Biol. 1974 Jan 5;85(4):633–664. doi: 10.1016/0022-2836(74)90321-0. [DOI] [PubMed] [Google Scholar]
- Gray D. M., Skinner D. M. A circular dichroism study of the primary structures of three crab satellite DNA's rich in A:T base pairs. Biopolymers. 1974 Apr;13(4):843–852. doi: 10.1002/bip.1974.360130417. [DOI] [PubMed] [Google Scholar]
- Harbers K., Harbers B., Spencer J. H. Nucleotide clusters in in deoxyribonucleic acids. X. Sequences of the pyrimidine oligonucleotides of mouse L-cell satellite DNA. Biochem Biophys Res Commun. 1974 Jun 4;58(3):814–821. doi: 10.1016/s0006-291x(74)80490-0. [DOI] [PubMed] [Google Scholar]
- Harbers K., Spencer J. H. Nucleotide clusters in deoxyribonucleic acids. Pyrimidine oligonucleotides of mouse L-cell satellite deoxyribonucleic acid and main-band deoxyribonucleic acid. Biochemistry. 1974 Mar 12;13(6):1094–1101. doi: 10.1021/bi00703a006. [DOI] [PubMed] [Google Scholar]
- Peacock W. J., Brutlag D., Goldring E., Appels R., Hinton C. W., Lindsley D. L. The organization of highly repeated DNA sequences in Drosophila melanogaster chromosomes. Cold Spring Harb Symp Quant Biol. 1974;38:405–416. doi: 10.1101/sqb.1974.038.01.043. [DOI] [PubMed] [Google Scholar]
- Pilet J., Blicharski J., Brahms J. Conformations and structural transitions in polydeoxynucleotides. Biochemistry. 1975 May 6;14(9):1869–1876. doi: 10.1021/bi00680a011. [DOI] [PubMed] [Google Scholar]
- Pilet J., Brahms J. Dependence of B-A conformational change in DNA on base composition. Nat New Biol. 1972 Mar 29;236(65):99–100. doi: 10.1038/newbio236099a0. [DOI] [PubMed] [Google Scholar]
- SUEOKA N., CHENG T. Y. Natural occurrence of a deoxyribonucleic acid resembling the deoxyadenylate-deoxythymidylate polymer. Proc Natl Acad Sci U S A. 1962 Oct 15;48:1851–1856. doi: 10.1073/pnas.48.10.1851. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SWARTZ M. N., TRAUTNER T. A., KORNBERG A. Enzymatic synthesis of deoxyribonucleic acid. XI. Further studies on nearest neighbor base sequences in deoxyribonucleic acids. J Biol Chem. 1962 Jun;237:1961–1967. [PubMed] [Google Scholar]
- Salomon R., Kaye A. M., Herzberg M. Mouse nuclear satellite DNA: 5-methylcytosine content, pyrimidine isoplith distribution and electron microscopic appearance. J Mol Biol. 1969 Aug 14;43(3):581–592. doi: 10.1016/0022-2836(69)90360-x. [DOI] [PubMed] [Google Scholar]
- Selsing E., Arnott S. Conformations of poly(d(A-T-T))-poly(d(A-A-T)). J Mol Biol. 1975 Oct 15;98(1):243–248. doi: 10.1016/s0022-2836(75)80112-4. [DOI] [PubMed] [Google Scholar]
- Skinner D. M., Beattie W. G., Blattner F. R., Stark B. P., Dahlberg J. E. The repeat sequence of a hermit crab satellite deoxyribonucleic acid is (-T-A-G-G-)n-(-A-T-C-C-)n. Biochemistry. 1974 Sep 10;13(19):3930–3937. doi: 10.1021/bi00716a018. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Base sequence and evolution of guinea-pig alpha-satellite DNA. Nature. 1970 Aug 22;227(5260):794–798. doi: 10.1038/227794a0. [DOI] [PubMed] [Google Scholar]
- Yunis J. J., Yasmineh W. G. Heterochromatin, satellite DNA, and cell function. Structural DNA of eucaryotes may support and protect genes and aid in speciation. Science. 1971 Dec 17;174(4015):1200–1209. doi: 10.1126/science.174.4015.1200. [DOI] [PubMed] [Google Scholar]


