Abstract
Calf satellite DNA I (p = 1.715) has been hydrolysed by a number or restriction endonucleases. It consists of a repeating unit of 1460 nucleotide pairs within which the sites of Eco R II Mbo I, Sac I, Alu I, Ava II and Hha I were localised in comparison with those of Eco R I and Hind II. The distribution of the Hpa II, Sac I, Hha I, Hinf I and Mbo II sites within calf satellite DNA I, as well as that of several restriction endonuclease sites within calf satellite DNA III (p = 1.705) allowed me to define subsatellite fractions. Furthermore, some of the sites of the CpG containing restriction enzymes Hpa II and Hha I are lacking. The possible implications of these results are discussed.
Full text
PDF![2677](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/0e61fbf8001b/nar00495-0274.png)
![2678](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/639c0492dd8d/nar00495-0275.png)
![2679](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/947872b20677/nar00495-0276.png)
![2680](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/74152bb8b702/nar00495-0277.png)
![2681](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/312a4fd1e1d2/nar00495-0278.png)
![2682](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/902f28bbac34/nar00495-0279.png)
![2683](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/b107bb345797/nar00495-0280.png)
![2684](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/e45819d9cd66/nar00495-0281.png)
![2685](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/111651202d69/nar00495-0282.png)
![2686](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/53a820ae0a6d/nar00495-0283.png)
![2687](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/200d910902dd/nar00495-0284.png)
![2688](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/ff950154d439/nar00495-0285.png)
![2689](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/1605c091fcb0/nar00495-0286.png)
![2690](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/8ed36534504d/nar00495-0287.png)
![2691](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/f612631404a5/nar00495-0288.png)
![2692](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/593a02cb8679/nar00495-0289.png)
![2693](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/3c8bef43ccdd/nar00495-0290.png)
![2694](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/ca36bd5a8a9b/nar00495-0291.png)
![2695](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/3e80901f74d5/nar00495-0292.png)
![2696](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eab0/343121/8989277ba408/nar00495-0293.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Biro P. A., Carr-Brown A., Southern E. M., Walker P. M. Partial sequence analysis of mouse satellite DNA evidence for short range periodicities. J Mol Biol. 1975 May 5;94(1):71–86. doi: 10.1016/0022-2836(75)90405-2. [DOI] [PubMed] [Google Scholar]
- Botchan M. R. Bovine satellite I DNA consists of repetitive units 1,400 base pairs in length. Nature. 1974 Sep 27;251(5473):288–292. doi: 10.1038/251288a0. [DOI] [PubMed] [Google Scholar]
- Danna K., Nathans D. Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2913–2917. doi: 10.1073/pnas.68.12.2913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Endow S. A., Polan M. L., Gall J. G. Satellite DNA sequences of Drosophila melanogaster. J Mol Biol. 1975 Aug 25;96(4):665–692. doi: 10.1016/0022-2836(75)90145-x. [DOI] [PubMed] [Google Scholar]
- Filipski J., Thiery J. P., Bernardi G. An analysis of the bovine genome by Cs2SO4-Ag density gradient centrifugation. J Mol Biol. 1973 Oct 15;80(1):177–197. doi: 10.1016/0022-2836(73)90240-4. [DOI] [PubMed] [Google Scholar]
- Fry K., Poon R., Whitcome P., Idriss J., Salser W., Mazrimas J., Hatch F. Nucleotide sequence of HS-beta satellite DNA from kangaroo rat Dipodomys ordii. Proc Natl Acad Sci U S A. 1973 Sep;70(9):2642–2646. doi: 10.1073/pnas.70.9.2642. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gall J. G., Atherton D. D. Satellite DNA sequences in Drosophila virilis. J Mol Biol. 1974 Jan 5;85(4):633–664. doi: 10.1016/0022-2836(74)90321-0. [DOI] [PubMed] [Google Scholar]
- Grippo P., Iaccarino M., Parisi E., Scarano E. Methylation of DNA in developing sea urchin embryos. J Mol Biol. 1968 Sep 14;36(2):195–208. doi: 10.1016/0022-2836(68)90375-6. [DOI] [PubMed] [Google Scholar]
- Holliday R., Pugh J. E. DNA modification mechanisms and gene activity during development. Science. 1975 Jan 24;187(4173):226–232. [PubMed] [Google Scholar]
- Hutton J. R., Wetmur J. G. Length dependence of the kinetic complexity of mouse satellite DNA. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1148–1155. doi: 10.1016/0006-291x(73)90620-7. [DOI] [PubMed] [Google Scholar]
- Hörz W., Hess I., Zachau H. G. Highly regular arrangement of a restriction-nuclease-sensitive site in rodent satellite DNAs. Eur J Biochem. 1974 Jun 15;45(2):501–512. doi: 10.1111/j.1432-1033.1974.tb03575.x. [DOI] [PubMed] [Google Scholar]
- Jones K. W. Chromosomal and nuclear location of mouse satellite DNA in individual cells. Nature. 1970 Mar 7;225(5236):912–915. doi: 10.1038/225912a0. [DOI] [PubMed] [Google Scholar]
- Kurnit D. M., Shafit B. R., Maio J. J. Multiple satellite deoxyribonucleic acids in the calf and their relation to the sex chromosomes. J Mol Biol. 1973 Dec 15;81(3):273–284. doi: 10.1016/0022-2836(73)90141-1. [DOI] [PubMed] [Google Scholar]
- Lebowitz P., Siegel W., Sklar J. Hemophilus aegyptius restriction edonuclease cleavage map of the simian virus 40 genome and its colinear relation with the hemophilus influenzae cleavage map of SV40. J Mol Biol. 1974 Sep 5;88(1):105–123. doi: 10.1016/0022-2836(74)90297-6. [DOI] [PubMed] [Google Scholar]
- Miller O. L., Jr, Beatty B. R. Visualization of nucleolar genes. Science. 1969 May 23;164(3882):955–957. doi: 10.1126/science.164.3882.955. [DOI] [PubMed] [Google Scholar]
- Pardue M. L., Gall J. G. Chromosomal localization of mouse satellite DNA. Science. 1970 Jun 12;168(3937):1356–1358. doi: 10.1126/science.168.3937.1356. [DOI] [PubMed] [Google Scholar]
- Smith G. P. Unequal crossover and the evolution of multigene families. Cold Spring Harb Symp Quant Biol. 1974;38:507–513. doi: 10.1101/sqb.1974.038.01.055. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Base sequence and evolution of guinea-pig alpha-satellite DNA. Nature. 1970 Aug 22;227(5260):794–798. doi: 10.1038/227794a0. [DOI] [PubMed] [Google Scholar]
- Southern E. M. Long range periodicities in mouse satellite DNA. J Mol Biol. 1975 May 5;94(1):51–69. doi: 10.1016/0022-2836(75)90404-0. [DOI] [PubMed] [Google Scholar]
- Studier F. W. Analysis of bacteriophage T7 early RNAs and proteins on slab gels. J Mol Biol. 1973 Sep 15;79(2):237–248. doi: 10.1016/0022-2836(73)90003-x. [DOI] [PubMed] [Google Scholar]
- Subramanian K. N., Pan J., Zain S., Weissman S. M. The mapping and ordering of fragments of SV40 DNA produced by restriction endonucleases. Nucleic Acids Res. 1974 Jun;1(6):727–752. doi: 10.1093/nar/1.6.727. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sutton W. D., McCallum M. Mismatching and the reassociation rate of mouse satellite DNA. Nat New Biol. 1971 Jul 21;232(29):83–85. doi: 10.1038/newbio232083a0. [DOI] [PubMed] [Google Scholar]
- Walker P. M. Origin of satellite DNA. Nature. 1971 Jan 29;229(5283):306–308. doi: 10.1038/229306a0. [DOI] [PubMed] [Google Scholar]
- Wensink P. C., Brown D. D. Denaturation map of the ribosomal DNA of Xenopus laevis. J Mol Biol. 1971 Sep 14;60(2):235–247. doi: 10.1016/0022-2836(71)90290-7. [DOI] [PubMed] [Google Scholar]