Abstract
The large T1 ribonuclease fragments of 18S ribosomal RNA from four mammalian species, rat, mouse, hamster and man, were compared by two-dimensional homochromatography fingerprinting. The nucleotide sequences of the large T1 ribonuclease fragments, polypyrimidines and polypurines which were different among the four mammalian species were determined and compared. The method used for determining nucleotide sequences utilizes 32p-labeling of oligonucleotides at their 5'-termini by polynucleotide kinase, partial digestion by ribonucleases and analysis of labeled spots by homochromatography-fingerprinting. Several examples of point mutations were detected. It was of interest that the 18S rRNA of Chinese hamster has more oligonucleotide sequences in common with those of man that rat or mouse.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Attardi G., Amaldi F. Structure and synthesis of ribosomal RNA. Annu Rev Biochem. 1970;39:183–226. doi: 10.1146/annurev.bi.39.070170.001151. [DOI] [PubMed] [Google Scholar]
- Bendich A. J., McCarthy B. J. Ribosomal RNA homologies among distantly related organisms. Proc Natl Acad Sci U S A. 1970 Feb;65(2):349–356. doi: 10.1073/pnas.65.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eladari M. E., Galibert F. Sequence determination of 5'-terminal and 3'-terminal T1 oligonucleotides of 18-S ribosomal RNA of a mouse cell line (L 5178 Y). Eur J Biochem. 1975 Jun 16;55(1):247–255. doi: 10.1111/j.1432-1033.1975.tb02157.x. [DOI] [PubMed] [Google Scholar]
- Fuke M., Busch H. A T1 ribonuclease fragment present in 18 S ribosomal RNA of Novikoff rat ascites hepatoma cells and absent from 18 S ribosomal RNA of HeLa cells. J Mol Biol. 1975 Dec 5;99(2):277–281. doi: 10.1016/s0022-2836(75)80145-8. [DOI] [PubMed] [Google Scholar]
- Fuke M. Introduction of specific cleavages into RNAs of RNA bacteriophages for determination of base sequences. Proc Natl Acad Sci U S A. 1974 Mar;71(3):742–745. doi: 10.1073/pnas.71.3.742. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldenberg D. M., Witte S., Elster K. GW-39: a new human tumor serially transplantable in the golden hamster. Transplantation. 1966 Nov;4(6):760–763. doi: 10.1097/00007890-196611000-00013. [DOI] [PubMed] [Google Scholar]
- Griswold M. D., Brown R. D., Tocchini-Valentini G. P. An analysis of the degree of homology between 28S rRNA from Xenopus laevis and Xenopus mulleri. Biochem Biophys Res Commun. 1974 Jun 18;58(4):1093–1103. doi: 10.1016/s0006-291x(74)80256-1. [DOI] [PubMed] [Google Scholar]
- Hashimoto S., Sakai M., Muramatsu M. 2'-O-methylated oligonucleotides in ribosomal 18S and 28S RNA of a mouse hepatoma, MH 134. Biochemistry. 1975 May 6;14(9):1956–1964. doi: 10.1021/bi00680a024. [DOI] [PubMed] [Google Scholar]
- Hunt J. A. Terminal-sequence studies of high-molecular-weight ribonucleic acid. The 3'-termini of rabbit reticulocyte ribosomal RNA. Biochem J. 1970 Nov;120(2):353–363. doi: 10.1042/bj1200353. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Inagaki A., Busch H. Structural analysis of nucleolar precursors of ribosomal ribonucleic acids. Sequence analysis of long oligonucleotides produced by T 1 ribonuclease digestion of nucleolar and ribosomal 28 S ribonucleic acid of Novikoff hepatoma ascites cells. J Biol Chem. 1972 May 25;247(10):3327–3335. [PubMed] [Google Scholar]
- Jordan B. R., Galling G., Jourdan R. Sequence and conformation of 5 S RNA from Chlorella cytoplasmic ribosomes: comparison with other 5 S RNA molecules. J Mol Biol. 1974 Aug 5;87(2):205–225. doi: 10.1016/0022-2836(74)90144-2. [DOI] [PubMed] [Google Scholar]
- Khan M. S., Maden B. E. Nucleotide sequences within the ribosomal ribonucleic acids of HeLa cells, Xenopus laevis and chick embryo fibroblasts. J Mol Biol. 1976 Feb 25;101(2):235–254. doi: 10.1016/0022-2836(76)90375-2. [DOI] [PubMed] [Google Scholar]
- Labrie F., Sanger F. 32P-labellingof haemoglobin messenger and other reticulocyte ribonucleic acids with polynucleotide phosphokinase in iro. Biochem J. 1969 Sep;114(2):29P–29P. doi: 10.1042/bj1140029pa. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Loening U. E. Molecular weights of ribosomal RNA in relation to evolution. J Mol Biol. 1968 Dec;38(3):355–365. doi: 10.1016/0022-2836(68)90391-4. [DOI] [PubMed] [Google Scholar]
- Maden B. E., Salim M. The methylated nucleotide sequences in HELA cell ribosomal RNA and its precursors. J Mol Biol. 1974 Sep 5;88(1):133–152. doi: 10.1016/0022-2836(74)90299-x. [DOI] [PubMed] [Google Scholar]
- Maden B. E., Tartof K. Nature of the ribosomal RNA transcribed from the X and Y chromosomes of Drosophila melanogaster. J Mol Biol. 1974 Nov 25;90(1):51–64. doi: 10.1016/0022-2836(74)90255-1. [DOI] [PubMed] [Google Scholar]
- Nazar R. N., Busch H. Structural analyses of mammalian ribosomal ribonucleic acid and its precursors. The distribution of polypyrimidine sequences in ribosomal 18-S RNA. Biochim Biophys Acta. 1973 Mar 28;299(3):428–443. doi: 10.1016/0005-2787(73)90267-0. [DOI] [PubMed] [Google Scholar]
- Nazar R. N., Busch H. Structural analyses of mammalian ribosomal ribonucleic acid and its precursors. The distribution of polypyrimidine sequences in ribosomal 28 S ribonucleic acid. J Biol Chem. 1974 Feb 10;249(3):919–929. [PubMed] [Google Scholar]
- Nazar R. N., Sitz T. O., Busch H. Homologies in eukaryotic 5.8S ribosomal RNA. Biochem Biophys Res Commun. 1975 Feb 3;62(3):736–743. doi: 10.1016/0006-291x(75)90461-1. [DOI] [PubMed] [Google Scholar]
- Nishikawa K., Takemura S. Nucleotide sequence of 5 S RNA from Torulopsis utilis. FEBS Lett. 1974 Mar 15;40(1):106–109. doi: 10.1016/0014-5793(74)80904-x. [DOI] [PubMed] [Google Scholar]
- Richardson C. C. Phosphorylation of nucleic acid by an enzyme from T4 bacteriophage-infected Escherichia coli. Proc Natl Acad Sci U S A. 1965 Jul;54(1):158–165. doi: 10.1073/pnas.54.1.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sakuma K., Kominami R., Muramatsu M., Sugiura M. Conservation of the 5'-terminal nucleotide sequences of ribosomal 18-S RNA in eukaryotes. Differential evolution of large and small ribosomal RNA. Eur J Biochem. 1976 Apr 1;63(2):339–350. doi: 10.1111/j.1432-1033.1976.tb10235.x. [DOI] [PubMed] [Google Scholar]
- Shine J., Dalgarno L. Identical 3'-terminal octanucleotide sequence in 18S ribosomal ribonucleic acid from different eukaryotes. A proposed role for this sequence in the recognition of terminator codons. Biochem J. 1974 Sep;141(3):609–615. doi: 10.1042/bj1410609a. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sprague K. U., Steitz J. A. The 3' terminal oligonucleotide of E. coli 16S ribosomal RNA: the sequence in both wild-type and RNase iii- cells is complementary to the polypurine tracts common to mRNA initiator regions. Nucleic Acids Res. 1975 Jun;2(6):787–798. doi: 10.1093/nar/2.6.787. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Williamson R., Brownlee G. G. The sequence of 5S ribosomal RNA from two mouse cell lines. FEBS Lett. 1969 Jun;3(5):306–308. doi: 10.1016/0014-5793(69)80163-8. [DOI] [PubMed] [Google Scholar]
- Woese C. R., Fox G. E., Zablen L., Uchida T., Bonen L., Pechman K., Lewis B. J., Stahl D. Conservation of primary structure in 16S ribosomal RNA. Nature. 1975 Mar 6;254(5495):83–86. doi: 10.1038/254083a0. [DOI] [PubMed] [Google Scholar]