Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Nov;3(11):2959–2970. doi: 10.1093/nar/3.11.2959

Detection and identification of minor nucleotides in intact deoxyribonucleic acids by mass spectrometry.

J L Wiebers
PMCID: PMC343144  PMID: 1005110

Abstract

A mass spectral method is described for the detection and identification of unusual nucleotide residues present in DNAs. Analysis by this method of intact, underivatized DNA from salmon sperm, calf thymus, mouse L-cells, wheat germ, M. lysodeikticus, E. Coli, and the bacteriophages 0X-174, fd, and lamda, yields diagnostic ions for the four common components of DNA as well as characteristic ions for 5-methyldeoxycytidine residues. The spectrum from T2 DNA contains ions indicative of 5-hydroxymethyldeoxycytidine and 5-methyldoxycytidine components but no ions corresponding to deoxycytidine residues. The DNAs of phages fd and 0X-174 also display ion products indicative of N6-methyldeoxyadenosine residues. Additional series of ions in the spectra of all four bacteriophage DNAs suggest the presence of 5-substituted deoxyuridine residues. The detection method exhibits considerable sensitivity in that amounts of DNA as low as 0.01 A260nm units can be used in the analysis, and thus, the procedure should prove of some value in the detection and location of modified components in specific regions of the various genomes by analysis of the appropriate endonuclease restriction fragments.

Full text

PDF
2959

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bond H. E., Flamm W. G., Burr H. E., Bond S. B. Mouse satellite DNA. Further studies on its biological and physical characteristics and its intracellular localization. J Mol Biol. 1967 Jul 28;27(2):289–302. doi: 10.1016/0022-2836(67)90021-6. [DOI] [PubMed] [Google Scholar]
  2. Brandon C., Gallop P. M., Marmur J., Hayashi H., Nakanishi K. Structure of a new pyrimidine from Bacillus subtilis phage SP-15 nucleic acid. Nat New Biol. 1972 Sep 20;239(90):70–71. doi: 10.1038/newbio239070a0. [DOI] [PubMed] [Google Scholar]
  3. Charnock G. A., Loo J. L. Mass spectral studies of deoxyribonucleic acid. Anal Biochem. 1970 Sep;37(1):81–84. doi: 10.1016/0003-2697(70)90260-5. [DOI] [PubMed] [Google Scholar]
  4. Gray M. W., Lane B. G. 5-carboxymethyluridine, a novel nucleoside derived from yeast and wheat embryo transfer ribonucleates. Biochemistry. 1968 Oct;7(10):3441–3453. doi: 10.1021/bi00850a020. [DOI] [PubMed] [Google Scholar]
  5. Harbers K., Harbers B., Spencer J. H. Nucleotide clusters in deoxyribonucleic acids. XII. The distribution of 5-methylcytosine in pyrimidine oligonucleotides of mouse L-cell satellite DNA and main band DNA. Biochem Biophys Res Commun. 1975 Sep 16;66(2):738–746. doi: 10.1016/0006-291x(75)90572-0. [DOI] [PubMed] [Google Scholar]
  6. Koenig W. A., Smith L. C., Crain P. F., McCloskey J. A. Mass spectrometry of trifluoroacetyl derivatives of nucleosides and hydrolysates of deoxyribonucleic acid. Biochemistry. 1971 Oct 12;10(21):3968–3979. doi: 10.1021/bi00797a026. [DOI] [PubMed] [Google Scholar]
  7. Kropinski A. M., Bose R. J., Warren R. A. 5-(4-Aminobutylaminomethyl)uracil, an unusual pyrimidine from the deoxyribonucleic acid of bacteriophage phiW-14. Biochemistry. 1973 Jan 2;12(1):151–157. doi: 10.1021/bi00725a025. [DOI] [PubMed] [Google Scholar]
  8. Lee A. S., Sinsheimer R. L. Location of the 5-methylcytosine group on the bacteriophage phi X174 genome. J Virol. 1974 Oct;14(4):872–877. doi: 10.1128/jvi.14.4.872-877.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Roscoe D. H., Tucker R. G. The biosynthesis of 5-hydroxymethyldeoxyuridylic acid in bacteriophage-infected Bacillus subtilis. Virology. 1966 May;29(1):157–166. doi: 10.1016/0042-6822(66)90205-4. [DOI] [PubMed] [Google Scholar]
  10. SPENCER J. H., CHARGAFF E. Studies on the nucleotide arrangement in deoxyribonucleic acids. VI. Pyrimidine nucleotide clusters: frequency and distribution in several species of the AT-type. Biochim Biophys Acta. 1963 Jan 29;68:18–27. doi: 10.1016/0006-3002(63)90106-9. [DOI] [PubMed] [Google Scholar]
  11. Salomon R., Kaye A. M., Herzberg M. Mouse nuclear satellite DNA: 5-methylcytosine content, pyrimidine isoplith distribution and electron microscopic appearance. J Mol Biol. 1969 Aug 14;43(3):581–592. doi: 10.1016/0022-2836(69)90360-x. [DOI] [PubMed] [Google Scholar]
  12. TAKAHASHI I., MARMUR J. Replacement of thymidylic acid by deoxyuridylic acid in the deoxyribonucleic acid of a transducing phage for Bacillus subtilis. Nature. 1963 Feb 23;197:794–795. doi: 10.1038/197794a0. [DOI] [PubMed] [Google Scholar]
  13. WYATT G. R., COHEN S. S. The bases of the nucleic acids of some bacterial and animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem J. 1953 Dec;55(5):774–782. doi: 10.1042/bj0550774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Wiebers J. L. Sequence analysis of oligodeoxyribonucleotides by mass spectrometry. Anal Biochem. 1973 Feb;51(2):542–556. doi: 10.1016/0003-2697(73)90511-3. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES