Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Nov;3(11):3015–3024. doi: 10.1093/nar/3.11.3015

Study on the structure-function relationship of polynucleotide phosphorylase: model of a proteolytic degraded polynucleotide phosphorylase.

A Guissani, C Portier
PMCID: PMC343148  PMID: 794831

Abstract

It is already known that modification of E. coli polynucleotide phosphorylase by endogenous proteolysis induces drastic changes in both phosphorolysis and polymerisation reactions. The structural parameters of the proteolysed polynucleotide phosphorylase are described. The phosphorolysis of polynucleotide, which is quite progressive for the native enzyme, is shown to be only partially progressive for the degraded enzyme, owing to the loss of polymer attachment sites.

Full text

PDF
3015

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barritault D., Expert-Bezançon A., Milet M., Háyes D. H. Identification of neighbouring proteins in the 30 S ribosomes of E. coli. FEBS Lett. 1975 Feb 1;50(2):114–120. doi: 10.1016/0014-5793(75)80469-8. [DOI] [PubMed] [Google Scholar]
  2. Godefroy T. Kinetics of polymerization and phosphorolysis reactions of Escherichia coli polynucleotide phosphorylase. Evidence for multiple binding of polynucleotide in phosphorolysis. Eur J Biochem. 1970 Jun;14(2):222–231. doi: 10.1111/j.1432-1033.1970.tb00281.x. [DOI] [PubMed] [Google Scholar]
  3. Hedrick J. L., Smith A. J. Size and charge isomer separation and estimation of molecular weights of proteins by disc gel electrophoresis. Arch Biochem Biophys. 1968 Jul;126(1):155–164. doi: 10.1016/0003-9861(68)90569-9. [DOI] [PubMed] [Google Scholar]
  4. OCHOA S., MII S. Enzymatic synthesis of polynucleotides. IV. Purification and properties of polynucleotide phosphorylase of Azotobacter vinelandii. J Biol Chem. 1961 Dec;236:3303–3311. [PubMed] [Google Scholar]
  5. Portier C. Quaternary structure of Escherichia coli polynucleotide phosphorylase: new evidence for a trimeric structure. FEBS Lett. 1975 Jan 15;50(1):79–81. doi: 10.1016/0014-5793(75)81045-3. [DOI] [PubMed] [Google Scholar]
  6. Portier C. Quaternary structure of polynucleotide phosphorylase from Escherichia coli: evidence of a complex between two types of polypeptide chains. Eur J Biochem. 1975 Jul 15;55(3):573–582. doi: 10.1111/j.1432-1033.1975.tb02194.x. [DOI] [PubMed] [Google Scholar]
  7. Portier C. Structure quaternaire de la polynucléotide phosphorylase dEscherichia coli : caractérisation dhimique de la forme A. Biochimie. 1975;57(5):545–550. doi: 10.1016/s0300-9084(75)80134-9. [DOI] [PubMed] [Google Scholar]
  8. Thang M. N., Dondon L., Godefroy-Colburn T. Degradation of Escherichia coli polynucleotide phosphorylase by E. coli endogenous proteases and by trypsin. Biochimie. 1971;53(3):291–302. doi: 10.1016/s0300-9084(71)80095-0. [DOI] [PubMed] [Google Scholar]
  9. Thang M. N., Harvey R. A., Grunberg-Manago M. Model for the elongation of polynucleotide chains by polynucleotide phosphorylase. J Mol Biol. 1970 Oct 28;53(2):261–280. doi: 10.1016/0022-2836(70)90299-8. [DOI] [PubMed] [Google Scholar]
  10. Thang M. N., Thang D. C., Leautey J. Séparation et identification de polynucléotide phosphorylase par électrophorèse sur gel polyacrylamide. C R Acad Sci Hebd Seances Acad Sci D. 1967 Dec 6;265(23):1823–1826. [PubMed] [Google Scholar]
  11. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES