Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1976 Dec;3(12):3383–3396. doi: 10.1093/nar/3.12.3383

The kinetics of bisulphite modification of reactive residues in E. coli tRNA2Phe.

M Lowdon, J P Goddard
PMCID: PMC343183  PMID: 794838

Abstract

E coli tRNA2Phe was modified at 25 degrees C with 3M sodium bisulphite, pH6.0, for periods of up to 48 hours, Three cytadinine residues, at position 17, 74 and 75 from the 5' end were each deaminated to uridine. The 2-methylthio-N6-isopentenyl adenosine at position 37 formed a 1:1 bi-sulphite addition product which was stable to alkaii. No other residues were permanently modified. The rate of modification of each residue was first order with respect to remaining unmodified nucleotide, the time of half reaction, t1/2, being different for each residue. C17 reaction reacted at twice the rate of cytidine in PolyC, indicating that it occupied a very exposed position in the tRNA.

Full text

PDF
3383

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrell B. G., Sanger F. The sequence of phenylalanine tRNA from E. coli. FEBS Lett. 1969 Jun;3(4):275–278. doi: 10.1016/0014-5793(69)80157-2. [DOI] [PubMed] [Google Scholar]
  2. Batey I. L., Brown D. M. The selective iodination of yeast phenylalanine transfer RNA with 125-I. Mol Biol Rep. 1975 Mar;2(1):65–72. doi: 10.1007/BF00357299. [DOI] [PubMed] [Google Scholar]
  3. Brahms J., Maurizot J. C., Michelson A. M. Conformation and thermodynamic properties of oligocytidylic acids. J Mol Biol. 1967 May 14;25(3):465–480. doi: 10.1016/0022-2836(67)90199-4. [DOI] [PubMed] [Google Scholar]
  4. Chakraburtty K. Effect of sodium bisulfite modification on the arginine acceptance of E. coli tRNA Arg. Nucleic Acids Res. 1975 Oct;2(10):1793–1804. doi: 10.1093/nar/2.10.1793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chambers R. W., Aoyagi S., Furukawa Y., Zawadzka H., Bhanot O. S. Inactivation of valine acceptor ativity by a C-U missense change in the anticodon of yeast valine transfer ribonucleic acid. J Biol Chem. 1973 Aug 10;248(15):5549–5551. [PubMed] [Google Scholar]
  6. Chang S. E., Cashmore A. R., Brown D. M. Selective modification of uridine and guanosine residues in tyrosine transfer ribonucleic acid. J Mol Biol. 1972 Jul 28;68(3):455–464. doi: 10.1016/0022-2836(72)90099-x. [DOI] [PubMed] [Google Scholar]
  7. Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
  8. Goddard J. P., Maden B. E. Reaction of HeLa cell methyl-labelled 28S ribosomal RNA with sodium bisulphite: a conformational probe for methylated sequences. Nucleic Acids Res. 1976 Feb;3(2):431–440. doi: 10.1093/nar/3.2.431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Goddard J. P., Schulman L. H. Conversion of exposed cytidine residues to uridine residues in Escherichia coli formylmethionine transfer ribonucleic acid. J Biol Chem. 1972 Jun 25;247(12):3864–3867. [PubMed] [Google Scholar]
  10. Hayatsu H., Wataya Y., Kai K., Iida S. Reaction of sodium bisulfite with uracil, cytosine, and their derivatives. Biochemistry. 1970 Jul 7;9(14):2858–2865. doi: 10.1021/bi00816a016. [DOI] [PubMed] [Google Scholar]
  11. Hayatsu H., Wataya Y., Kazushige K. The addition of sodium bisulfite to uracil and to cytosine. J Am Chem Soc. 1970 Feb 11;92(3):724–726. doi: 10.1021/ja00706a062. [DOI] [PubMed] [Google Scholar]
  12. Kim S. H., Suddath F. L., Quigley G. J., McPherson A., Sussman J. L., Wang A. H., Seeman N. C., Rich A. Three-dimensional tertiary structure of yeast phenylalanine transfer RNA. Science. 1974 Aug 2;185(4149):435–440. doi: 10.1126/science.185.4149.435. [DOI] [PubMed] [Google Scholar]
  13. Kim S. H., Sussman J. L., Suddath F. L., Quigley G. J., McPherson A., Wang A. H., Seeman N. C., RICH A. The general structure of transfer RNA molecules. Proc Natl Acad Sci U S A. 1974 Dec;71(12):4970–4974. doi: 10.1073/pnas.71.12.4970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kućan Z., Freude K. A., Kućan I., Chambers R. W. Aminoacylation of bisulphite-modified yeast tyrosine transfer RNA. Nat New Biol. 1971 Aug 11;232(2):177–179. doi: 10.1038/newbio232177a0. [DOI] [PubMed] [Google Scholar]
  15. Ladner J. E., Jack A., Robertus J. D., Brown R. S., Rhodes D., Clark B. F., Klug A. Structure of yeast phenylalanine transfer RNA at 2.5 A resolution. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4414–4418. doi: 10.1073/pnas.72.11.4414. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pearson R. L., Weiss J. F., Kelmers A. D. Improved separation of transfer RNA's on polychlorotrifuoroethylene-supported reversed-phase chromatography columns. Biochim Biophys Acta. 1971 Feb 11;228(3):770–774. doi: 10.1016/0005-2787(71)90748-9. [DOI] [PubMed] [Google Scholar]
  17. Pörchke D. The nature of stacking interations in polynucleotides. Molecular states in Oligo- and polyribocytidylic acids by relaxation analysis. Biochemistry. 1976 Apr 6;15(7):1495–1499. doi: 10.1021/bi00652a021. [DOI] [PubMed] [Google Scholar]
  18. Quigley G. J., Wang A. H., Seeman N. C., Suddath F. L., Rich A., Sussman J. L., Kim S. H. Hydrogen bonding in yeast phenylalanine transfer RNA. Proc Natl Acad Sci U S A. 1975 Dec;72(12):4866–4870. doi: 10.1073/pnas.72.12.4866. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reid B. R., Ribeiro N. S., Gould G., Robillard G., Hilbers C. W., Shulman R. G. Tertiary hydrogen bonds in the solution structure of transfer RNA. Proc Natl Acad Sci U S A. 1975 Jun;72(6):2049–2053. doi: 10.1073/pnas.72.6.2049. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rhodes D. Accessible and inaccessible bases in yeast phenylalanine transfer RNA as studied by chemical modification. J Mol Biol. 1975 May 25;94(3):449–460. doi: 10.1016/0022-2836(75)90214-4. [DOI] [PubMed] [Google Scholar]
  21. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Correlation between three-dimensional structure and chemical reactivity of transfer RNA. Nucleic Acids Res. 1974 Jul;1(7):927–932. doi: 10.1093/nar/1.7.927. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Robertus J. D., Ladner J. E., Finch J. T., Rhodes D., Brown R. S., Clark B. F., Klug A. Structure of yeast phenylalanine tRNA at 3 A resolution. Nature. 1974 Aug 16;250(467):546–551. doi: 10.1038/250546a0. [DOI] [PubMed] [Google Scholar]
  23. Sanger F., Brownlee G. G., Barrell B. G. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. doi: 10.1016/s0022-2836(65)80104-8. [DOI] [PubMed] [Google Scholar]
  24. Shapiro R., Cohen B. I., Servis R. E. Specific deamination of RNA by sodium bisulphite. Nature. 1970 Sep 5;227(5262):1047–1048. doi: 10.1038/2271047a0. [DOI] [PubMed] [Google Scholar]
  25. Shapiro R., DiFate V., Welcher M. Deamination of cytosine derivatives by bisulfite. Mechanism of the reaction. J Am Chem Soc. 1974 Feb 6;96(3):906–912. doi: 10.1021/ja00810a043. [DOI] [PubMed] [Google Scholar]
  26. Singhal R. P. Chemical probe of structure and function of transfer ribonucleic acids. Biochemistry. 1974 Jul 2;13(14):2924–2932. doi: 10.1021/bi00711a023. [DOI] [PubMed] [Google Scholar]
  27. Singhal R. P. Modification of Escherichia coli glutamate transfer ribonucleic acid with bisulfite. J Biol Chem. 1971 Sep 25;246(18):5848–5851. [PubMed] [Google Scholar]
  28. Stulberg M. P. The isolation and properties of phenylalanyl ribonucleic acid synthetase from Escherichia coli B. J Biol Chem. 1967 Mar 10;242(5):1060–1064. [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES