Abstract
S-adenosyl-L-methionine-tRNA methyltransferases of a murine leukemia cell line were found to exist in a high molecular weight enzyme complex. Aminoacyl-tRNA synthetase activity always co-chromatographed and co-sedimented with methyltransferase activity in evidence of a unique association of these two groups of enzymes. Molecular weight studies showed a probable molecular weight of 9 × 105 daltons for the intact complex which dissociates to complexes of 6 × 105 and 3 × 105 daltons. The complexes contain discrete polypeptides of 25,000-90,000 daltons as determined from SDS-gel electrophoresis. High resolution fatty acid analysis showed that only very small amounts of saponifiable lipids were associated with the purified enzyme complex. Similarly very little protein-bound sugar was found within the complex indicating that neither lipids nor sugars were involved in the protein-protein interactions of the complex. Analysis of tRNA methylated invitro indicated the presence of most methyltransferase activities in the purified complex. Of note was the absence from the complex of the methyltransferase responsible for the production of ribo Tp.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agris P. F., Koh H., Söll D. The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch Biochem Biophys. 1973 Jan;154(1):277–282. doi: 10.1016/0003-9861(73)90058-1. [DOI] [PubMed] [Google Scholar]
- Agris P. F., Spremulli L. L., Brown G. M. tRNA methylases from HeLa cells: purification and properties of an adenine-1-methylase and a guanine-N2-methylase. Arch Biochem Biophys. 1974 May;162(1):38–47. doi: 10.1016/0003-9861(74)90102-7. [DOI] [PubMed] [Google Scholar]
- Agris P. F., Woolverton D. K., Setzer D. Subcellular localization of S-adenosyl-L-methionine:tRNA methyltransferases with aminoacyl-tRNA synthetases in human and mouse: normal and leukemic leukocytes. Proc Natl Acad Sci U S A. 1976 Nov;73(11):3857–3861. doi: 10.1073/pnas.73.11.3857. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bandyopadhyay A. K., Deutscher M. P. Complex of aminoacyl-transfer RNA synthetases. J Mol Biol. 1971 Aug 28;60(1):113–122. doi: 10.1016/0022-2836(71)90451-7. [DOI] [PubMed] [Google Scholar]
- Bandyopadhyay A. K., Deutscher M. P. Lipids associated with the aminoacyl-transfer RNA synthetase complex. J Mol Biol. 1973 Feb 25;74(2):257–261. doi: 10.1016/0022-2836(73)90112-5. [DOI] [PubMed] [Google Scholar]
- Berg B. H. I. A study of the stages in the quantitative isolation of aminoacyl-tRNA synthetase activities from mouse liver. Biochim Biophys Acta. 1975 Jun 16;395(2):164–172. doi: 10.1016/0005-2787(75)90155-0. [DOI] [PubMed] [Google Scholar]
- Culp L. A., Brown G. M. RNA methylases from rat liver nucleoli. Arch Biochem Biophys. 1970 Mar;137(1):222–230. doi: 10.1016/0003-9861(70)90429-7. [DOI] [PubMed] [Google Scholar]
- EAGLE H. Nutrition needs of mammalian cells in tissue culture. Science. 1955 Sep 16;122(3168):501–514. doi: 10.1126/science.122.3168.501. [DOI] [PubMed] [Google Scholar]
- Friend C., Scher W., Holland J. G., Sato T. Hemoglobin synthesis in murine virus-induced leukemic cells in vitro: stimulation of erythroid differentiation by dimethyl sulfoxide. Proc Natl Acad Sci U S A. 1971 Feb;68(2):378–382. doi: 10.1073/pnas.68.2.378. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Geels J., Bont W. S., Rezelman G. Isolation from rat liver of all aminoacyl-tRNA synthetases by centrifugation. Arch Biochem Biophys. 1971 Jun;144(2):773–774. doi: 10.1016/0003-9861(71)90386-9. [DOI] [PubMed] [Google Scholar]
- Gerhardt K. O., Gehrke C. W. Rapid microdetermination of fatty acids in biological materials by gas-liquid chromatography. J Chromatogr. 1977 Jul 1;143(4):335–344. doi: 10.1016/s0378-4347(00)80980-9. [DOI] [PubMed] [Google Scholar]
- Hampel A., Enger M. D. Subcellular distribution of aminoacyl-transfer RNA synthetases in Chinese hamster ovary cell culture. J Mol Biol. 1973 Sep 15;79(2):285–293. doi: 10.1016/0022-2836(73)90006-5. [DOI] [PubMed] [Google Scholar]
- Harris C. L., Titchener E. B., Cline A. L. Sulfur-deficient transfer ribonucleic acid in a cysteine-requiring, "relaxed" mutant of Escherichia coli. J Bacteriol. 1969 Dec;100(3):1322–1327. doi: 10.1128/jb.100.3.1322-1327.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kraus J., Staehelin M. N2-guanine specific transfer RNA methyltransferase II from rat liver. Nucleic Acids Res. 1974 Nov;1(11):1479–1496. doi: 10.1093/nar/1.11.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Lehnhardt W. F., Winzler R. J. Determination of neutral sugars in glycoproteins by gas-liquid chromatography. J Chromatogr. 1968 May 7;34(4):471–479. doi: 10.1016/0021-9673(68)80091-3. [DOI] [PubMed] [Google Scholar]
- Liau M. C., Flatt N. C., Hurlbert R. B. Methylation of preribosomal and transfer RNA's by isolated nucleoli of the Novikoff rat tumor. Biochim Biophys Acta. 1970 Nov 12;224(1):282–285. doi: 10.1016/0005-2787(70)90648-9. [DOI] [PubMed] [Google Scholar]
- Liau M. C., Hunt M. E., Hurlbert R. B. Role of ribosomal RNA methylases in the regulation of ribosome production in mammalian cells. Biochemistry. 1976 Jul 13;15(14):3158–3164. doi: 10.1021/bi00659a033. [DOI] [PubMed] [Google Scholar]
- Moline G., Hampel A., Enger M. D. Polyribosomal and particulate distribution of lysyl- and phenylalanyl-transfer ribonucleic acid synthetases. Biochem J. 1974 Oct;143(1):191–195. doi: 10.1042/bj1430191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munns T. W., Sims H. F. Methylation and processing of transfer ribonucleic acid in mammalian and bacterial cells. J Biol Chem. 1975 Mar 25;250(6):2143–2149. [PubMed] [Google Scholar]
- Nishimura S. Minor components in transfer RNA: their characterization, location, and function. Prog Nucleic Acid Res Mol Biol. 1972;12:49–85. [PubMed] [Google Scholar]
- Richter D., Erdmann V. A., Sprinzl M. A new transfer RNA fragment reaction: Tp psi pCpGp bound to a ribosome-messenger RNA complex induces the synthesis of guanosine tetra- and pentaphosphates. Proc Natl Acad Sci U S A. 1974 Aug;71(8):3226–3229. doi: 10.1073/pnas.71.8.3226. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roberts W. K., Olsen M. L. Studies on the formation and stability of aminoacyl-tRNA synthetase complexes from Ehrlich ascites cells. Biochim Biophys Acta. 1976 Dec 13;454(3):480–492. doi: 10.1016/0005-2787(76)90274-4. [DOI] [PubMed] [Google Scholar]
- Roy P. H., Weissbach A. DNA methylase from HeLa cell nuclei. Nucleic Acids Res. 1975 Oct;2(10):1669–1684. doi: 10.1093/nar/2.10.1669. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Simsek M., Ziegenmeyer J., Heckman J., Rajbhandary U. L. Absence of the sequence G-T-psi-C-G(A)- in several eukaryotic cytoplasmic initiator transfer RNAs. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1041–1045. doi: 10.1073/pnas.70.4.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Som K., Hardesty B. Isolation and partial characterization of an aminoacyl-tRNA synthetase complex from rabbit reticulocytes. Arch Biochem Biophys. 1975 Feb;166(2):507–517. doi: 10.1016/0003-9861(75)90414-2. [DOI] [PubMed] [Google Scholar]
- Spremulli L. L., Agris P. F., Brown G. M., Rajbhandary U. L. Escherichia coli formylmethionine tRNA: methylation of specific guanine and adenine residues catalyzed by HeLa cells tRNA methylases and the effect of these methylations on its biological properties. Arch Biochem Biophys. 1974 May;162(1):22–37. doi: 10.1016/0003-9861(74)90101-5. [DOI] [PubMed] [Google Scholar]
- Tscherne J. S., Weinstein I. B., Lanks K. W., Gersten N. B., Cantor C. R. Phenylalanyl transfer ribonucleic acid synthetase activity associated with rat liver ribosomes and microsomes. Biochemistry. 1973 Sep 25;12(20):3859–3865. doi: 10.1021/bi00744a010. [DOI] [PubMed] [Google Scholar]
- Ussery M. A., Tanaka W. K., Hardesty B. Subcellular distribution of aminoacyl-tRNA synthetases in various eukaryotic cells. Eur J Biochem. 1977 Feb;72(3):491–500. doi: 10.1111/j.1432-1033.1977.tb11272.x. [DOI] [PubMed] [Google Scholar]
- Vennegoor C. J., Stols A. L., Bloemendal H. More evidence for a particle character of aminoacyl-transfer RNA synthetases isolated from rat liver. J Mol Biol. 1972 Mar 28;65(2):375–378. doi: 10.1016/0022-2836(72)90289-6. [DOI] [PubMed] [Google Scholar]
- Vennegoor C., Bloemendal H. Occurrence and particle character of aminoacyl-tRNA synthetases in the post-microsomal fraction from rat liver. Eur J Biochem. 1972 Apr 24;26(4):462–473. doi: 10.1111/j.1432-1033.1972.tb01788.x. [DOI] [PubMed] [Google Scholar]
