Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Nov;4(11):3829–3838. doi: 10.1093/nar/4.11.3829

The binding of berenil to Escherichia coli ribosome.

S Sinharay, Z Ali, D P Burma
PMCID: PMC343203  PMID: 339204

Abstract

The binding of the nonintercalating dye berenil to the 70S ribosome of Escherichia coli has been demonstrated by spectrophotometric measurements and gel filtration through Biogel P100 column. The berenil spectrum is gradually shifted towards the red region with the increasing amount of ribosome added, the isosbestic point being at 375 nm. There is positive cooperativity in the binding of berenil to the ribosome as demonstrated by the equilibrium dialysis. On binding with berenil, the ribosome is degraded faster by RNase I especially at low Mg++ concentration and its capacity to inhibit RNase I catalysed hydrolysis of ribopolymers is decreased. These indicate the unfolding of the structure of the ribosome.

Full text

PDF
3829

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ballesta J. P., Waring M. J., Vázquez D. Specific release of ribosomal proteins by nucleic acid-intercalating agents. Nucleic Acids Res. 1976 May;3(5):1307–1322. doi: 10.1093/nar/3.5.1307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Datta A. K., Burma D. P. Association of ribonuclease I with ribosomes and their subunits. J Biol Chem. 1972 Nov 10;247(21):6795–6801. [PubMed] [Google Scholar]
  3. Ghosh S., Burma D. P. Effects of polycationic amines and streptomycin on the structure of N-ethylmaleimide treated rat liver ribosome. Indian J Med Res. 1976 Nov;64(11):1680–1686. [PubMed] [Google Scholar]
  4. Goldberg A. Magnesium binding by Escherichia coli ribosomes. J Mol Biol. 1966 Feb;15(2):663–673. doi: 10.1016/s0022-2836(66)80134-1. [DOI] [PubMed] [Google Scholar]
  5. HUMMEL J. P., DREYER W. J. Measurement of protein-binding phenomena by gel filtration. Biochim Biophys Acta. 1962 Oct 8;63:530–532. doi: 10.1016/0006-3002(62)90124-5. [DOI] [PubMed] [Google Scholar]
  6. NEU H. C., HEPPEL L. A. SOME OBSERVATIONS ON THE "LATENT" RIBONUCLEASE OF ESCHERICHIA COLI. Proc Natl Acad Sci U S A. 1964 Jun;51:1267–1274. doi: 10.1073/pnas.51.6.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Rastogi A. K., Koch J. Generation in vivo of "covalently closed" circular mitochondrial DNA free of superhelical turns. Eur J Biochem. 1974 Aug 1;46(3):583–588. doi: 10.1111/j.1432-1033.1974.tb03653.x. [DOI] [PubMed] [Google Scholar]
  8. Suryanarayana T., Burma D. P. Effects of intercalating agents on the structure of the ribosome. Biochem Biophys Res Commun. 1975 Jul 22;65(2):708–713. doi: 10.1016/s0006-291x(75)80203-8. [DOI] [PubMed] [Google Scholar]
  9. Waring M. Variation of the supercoils in closed circular DNA by binding of antibiotics and drugs: evidence for molecular models involving intercalation. J Mol Biol. 1970 Dec 14;54(2):247–279. doi: 10.1016/0022-2836(70)90429-8. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES