Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Dec;4(12):4291–4303. doi: 10.1093/nar/4.12.4291

Nucleotide sequence of a lysine tRNA from Bacillus subtilis.

Y Yamada, H Ishikura
PMCID: PMC343241  PMID: 414208

Abstract

A lysine tRNA (tRNA1Lys) was purified from Bacillus subtilis W168 by a consecutive use of several column chromatographic systems. The nucleotide sequence was determined to be pG-A-G-C-C-A-U-U-A-G-C-U-C-A-G-U-D-G-G-D-A-G-A-G-C-A-U-C-U-G-A-C-U-U(U*)-U-U-K-A-psi-C-A-G-A-G-G-m7G(G)-U-C-G-A-A-G-G-T-psi-C-G-A-G-U-C-C-U-U-C-A-U-G-G-C-U-C-A-C-C-AOH, where K and U* are unidentified nucleosides. The nucleosides of U34 and m7G46 were partially substituted with U* and G, respectively. The binding ability of lysyl-tRNA1Lys to Escherichia coli ribosomes was stimulated with ApApA as well as ApApG.

Full text

PDF
4291

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman S., Brenner S., Smith J. D. Identification of an ochre-suppressing anticodon. J Mol Biol. 1971 Feb 28;56(1):195–197. doi: 10.1016/0022-2836(71)90094-5. [DOI] [PubMed] [Google Scholar]
  2. Arceneaux J. L., Sueoka N. Two species of Bacillus subtilis tyrosine transfer ribonucleic acid. Biological properties and alteration in their relative amounts during growth. J Biol Chem. 1969 Nov 10;244(21):5959–5966. [PubMed] [Google Scholar]
  3. Chakraburtty K., Steinschneider A., Case R. V., Mehler A. H. Primary structure of tRNA-Lys of E. coli B. Nucleic Acids Res. 1975 Nov;2(11):2069–2075. doi: 10.1093/nar/2.11.2069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chuang R. Y., Doi R. H. Characterization of lysine transfer ribonucleic acid from vegetative cells and spores of Bacillus subtilis. J Biol Chem. 1972 Jun 10;247(11):3476–3484. [PubMed] [Google Scholar]
  5. Chuang R., Yamakawa T., Doi R. H. Identification of two lysine tRNA cistrons in Bacillus subtilis by hybridization of lysyl-tRNA with DNA. Biochem Biophys Res Commun. 1971 May 21;43(4):710–716. doi: 10.1016/0006-291x(71)90673-5. [DOI] [PubMed] [Google Scholar]
  6. Doi R. H., Kaneko I., Igarashi R. T. Pattern of valine transfer ribonucleic acid of Bacillus subtilis under different growth conditions. J Biol Chem. 1968 Mar 10;243(5):945–951. [PubMed] [Google Scholar]
  7. Gillam I., Millward S., Blew D., von Tigerstrom M., Wimmer E., Tener G. M. The separation of soluble ribonucleic acids on benzoylated diethylaminoethylcellulose. Biochemistry. 1967 Oct;6(10):3043–3056. doi: 10.1021/bi00862a011. [DOI] [PubMed] [Google Scholar]
  8. Harada F., Dahlberg J. E. Specific cleavage of tRNA by nuclease S1. Nucleic Acids Res. 1975 Jun;2(6):865–871. doi: 10.1093/nar/2.6.865. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Harada F., Kimura F., Nishimura S. Primary sequence of tRNA val from Escherichia coli B. I. Oligonucleotide sequences of digests of Escherichia coli tRNA val with RNase T and pancreatic RNase. Biochemistry. 1971 Aug 17;10(17):3269–3277. doi: 10.1021/bi00793a017. [DOI] [PubMed] [Google Scholar]
  10. Heyman T., Leidner J., Menichi-Desseaux B. Chromatographic separation of two ionic strength dependent conformations of valine transfer ribonucleic acid of Bacillus subtilis. Biochimie. 1973;55(2):127–134. doi: 10.1016/s0300-9084(73)80384-0. [DOI] [PubMed] [Google Scholar]
  11. Heyman T., Seror S., Desseaux B., Legault-Demare J. Valine transfer ribonucleic acid. I. Chromatographic study of valine tRNA modifications during Bacillus subtilis growth. Biochim Biophys Acta. 1967;145(3):596–604. doi: 10.1016/0005-2787(67)90118-9. [DOI] [PubMed] [Google Scholar]
  12. Holmes W. M., Hurd R. E., Reid B. R., Rimerman R. A., Hatfield G. W. Separation of transfer ribonucleic acid by sepharose chromatography using reverse salt gradients. Proc Natl Acad Sci U S A. 1975 Mar;72(3):1068–1071. doi: 10.1073/pnas.72.3.1068. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ishikura H., Nishimura S. Fractionation of serine transfer ribonucleic acids from Escherichia coli and their coding properties. Biochim Biophys Acta. 1968 Jan 29;155(1):72–81. doi: 10.1016/0005-2787(68)90336-5. [DOI] [PubMed] [Google Scholar]
  14. Ishikura H., Yamada Y., Murao K., Saneyoshi M., Nishimura S. The presence of N-[9-(beta-D-ribofuranosyl)purin-6-ylcarbamoyl]threonine in serine, methionine and lysine transfer RNA's from Escherichia coli. Biochem Biophys Res Commun. 1969 Dec 4;37(6):990–995. doi: 10.1016/0006-291x(69)90229-0. [DOI] [PubMed] [Google Scholar]
  15. Ishikura H., Yamada Y., Nishimura S. Structure of serine tRNA from Escherichia coli. I. Purification of serine tRNA's with different codon responses. Biochim Biophys Acta. 1971 Jan 28;228(2):471–481. doi: 10.1016/0005-2787(71)90052-9. [DOI] [PubMed] [Google Scholar]
  16. Kimura-Harada F., Harada F., Nishimura S. The presence of N-[9-(c-D-ribofuranosyl)purin-6-ylcarbamoyl] threonine in isoleucine, threonine and asparagine tRNAs from Escherichia coli. FEBS Lett. 1972 Mar;21(1):71–74. doi: 10.1016/0014-5793(72)80166-2. [DOI] [PubMed] [Google Scholar]
  17. Kimura F., Harada F., Nishimura S. Primary sequence of tRNA-Val-1 from Escherichia coli B. II. Isolation of large fragments by limited digestion with RNases, and overlapping of fragments to reduce the total primary sequence. Biochemistry. 1971 Aug 17;10(17):3277–3283. doi: 10.1021/bi00793a018. [DOI] [PubMed] [Google Scholar]
  18. Lazzarini R. A. Differences in lysine-sRNA from spore and vegetative cells of Bacillus subtillis. Proc Natl Acad Sci U S A. 1966 Jul;56(1):185–190. doi: 10.1073/pnas.56.1.185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lazzarini R. A., Santangelo E. Medium-dependent alteration of lysine transfer ribonucleic acid in sporulating Bacillus subtilis cells. J Bacteriol. 1967 Jul;94(1):125–130. doi: 10.1128/jb.94.1.125-130.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Madison J. T., Boguslawski S. J., Teetor G. H. Nucleotide sequence of a lysine transfer ribonucleic Acid from bakers' yeast. Science. 1972 May 12;176(4035):687–689. doi: 10.1126/science.176.4035.687. [DOI] [PubMed] [Google Scholar]
  21. Murao K., Hasegawa T., Ishikura H. 5-methoxyuridine: a new minor constituent located in the first position of the anticodon of tRNAAla, tRNAThr, and tRNAVal from Bacillus subtilis. Nucleic Acids Res. 1976 Oct;3(10):2851–2860. doi: 10.1093/nar/3.10.2851. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. NIRENBERG M., LEDER P. RNA CODEWORDS AND PROTEIN SYNTHESIS. THE EFFECT OF TRINUCLEOTIDES UPON THE BINDING OF SRNA TO RIBOSOMES. Science. 1964 Sep 25;145(3639):1399–1407. doi: 10.1126/science.145.3639.1399. [DOI] [PubMed] [Google Scholar]
  23. NISHIMURA S., NOVELLI G. D. DISSOCIATION OF AMINO ACID ACCEPTOR FUNCTION OF SRNA FROM ITS TRANSFER FUNCTION. Proc Natl Acad Sci U S A. 1965 Jan;53:178–184. doi: 10.1073/pnas.53.1.178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Neelon F. A., Molinaro M., Ishikura H., Sheiner L. B., Cantoni G. L. Oligonucleotides produced by digestion of bakers' yeast serine transfer ribonucleic acid with specific nucleases. J Biol Chem. 1967 Oct 10;242(19):4515–4522. [PubMed] [Google Scholar]
  25. Nishimura S., Harada F., Narushima U., Seno T. Purification of methionine-, valine-, phenylalanine- and tyrosine-specific tRNA from Escherichia coli. Biochim Biophys Acta. 1967 Jun 20;142(1):133–148. doi: 10.1016/0005-2787(67)90522-9. [DOI] [PubMed] [Google Scholar]
  26. RUSHIZKY G. W., BARTOS E. M., SOBER H. A. CHROMATOGRAPHY OF MIXED OLIGONUCLEOTIDES ON DEAE-SEPHADEX. Biochemistry. 1964 May;3:626–629. doi: 10.1021/bi00893a005. [DOI] [PubMed] [Google Scholar]
  27. RUSHIZKY G. W., SOBER H. A. Desalting of mono- and oligonucleotides. Biochim Biophys Acta. 1962 Jan 22;55:217–217. doi: 10.1016/0006-3002(62)90950-2. [DOI] [PubMed] [Google Scholar]
  28. Randerath K., Chia L. S., Gupta R. C., Randerath E. Structural analysis of nonradioactive RNA by postlabeling: the primary structure of baker's yeast tRNA Leu/CUA. Biochem Biophys Res Commun. 1975 Mar 3;63(1):157–163. doi: 10.1016/s0006-291x(75)80024-6. [DOI] [PubMed] [Google Scholar]
  29. Rogg H., Brambilla R., Keith G., Staehelin M. An improved method for the separation and quantitation of the modified nucleosides of transfer RNA. Nucleic Acids Res. 1976 Jan;3(1):285–295. doi: 10.1093/nar/3.1.285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Rushizky G. W., Skavenski I. H., Sober H. A. Characterization of the major compounds found in ribonuclease T-1 digests of ribonucleic acid. 3. Penta- and higher oligonucleotides. J Biol Chem. 1965 Oct;240(10):3984–3987. [PubMed] [Google Scholar]
  31. Sanger F., Brownlee G. G., Barrell B. G. A two-dimensional fractionation procedure for radioactive nucleotides. J Mol Biol. 1965 Sep;13(2):373–398. doi: 10.1016/s0022-2836(65)80104-8. [DOI] [PubMed] [Google Scholar]
  32. Sekiya T., Takeishi K., Ukita T. Specificity of yeast glutamic acid transfer RNA for codon recognition. Biochim Biophys Acta. 1969 Jun 17;182(2):411–426. doi: 10.1016/0005-2787(69)90192-0. [DOI] [PubMed] [Google Scholar]
  33. Smith C. J., Ley A. N., D'Obrenan P., Mitra S. K. The structure and coding specificity of a lysine transfer ribonucleic acid from the haploid yeast Saccharomyces cerevisiae alpha S288C. J Biol Chem. 1971 Dec 25;246(24):7817–7819. [PubMed] [Google Scholar]
  34. Squires C., Carbon J. Normal and mutant glycine transfer RNAs. Nat New Biol. 1971 Oct 27;233(43):274–277. doi: 10.1038/newbio233274a0. [DOI] [PubMed] [Google Scholar]
  35. Vold B. S. Analysis of isoaccepting transfer ribonucleic acid species of Bacillus subtilis: changes in chromatography of transfer ribonucleic acids associated with stage of development. J Bacteriol. 1973 Apr;114(1):178–182. doi: 10.1128/jb.114.1.178-182.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Vold B. S. Analysis of isoaccepting transfer ribonucleic acid species of Bacillus subtilis: chromatographic differences between transfer ribonucleic acids from spores and cells in exponential growth. J Bacteriol. 1973 Feb;113(2):825–833. doi: 10.1128/jb.113.2.825-833.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Wintermeyer W., Zachau H. G. A specific chemical chain scission of tRNA at 7-methylguanosine. FEBS Lett. 1970 Dec;11(3):160–164. doi: 10.1016/0014-5793(70)80518-x. [DOI] [PubMed] [Google Scholar]
  38. Yamada Y., Ishikura H. Nucleotide sequence of initiator tRNA from Bacillus subtilis. FEBS Lett. 1975 Jun 15;54(2):155–158. doi: 10.1016/0014-5793(75)80064-0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES