Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1977 Dec;4(12):4357–4370. doi: 10.1093/nar/4.12.4357

RNA methylation and control of eukaryotic RNA biosynthesis: processing and utilization of undermethylated tRNAs in CHO cells.

F Amalric, J P Bachellerie, M Caboche
PMCID: PMC343246  PMID: 600798

Abstract

The role of RNA methylations in the control of tRNA production and utilization for protein biosynthesis has been investigated through a study of the effects in vivo of cycloleucine a specific and potent inhibitor of S adenosyl-methionine mediated methylation. During the cycloleucine treatment, the rate of appearance of newly synthetized tRNAs into the cytoplasm is markedly reduced (about 50%). These molecules are extensively (more than 90%) undermethylated and are integrated into polysomes, but at a slower rate than normally methylated tRNAs.

Full text

PDF
4357

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bernhardt D., Darnell J. E., Jr tRNA synthesis in HeLa cells: a precursor to tRNA and the effects of methionine starvation on tRNA synthesis. J Mol Biol. 1969 May 28;42(1):43–56. doi: 10.1016/0022-2836(69)90485-9. [DOI] [PubMed] [Google Scholar]
  2. Björk G. R., Isaksson L. A. Isolation of mutants of Escherichia coli lac king 5-methyluracil in transfer ribonucleic acid or 1-methylguanine in ribosomal RNA. J Mol Biol. 1970 Jul 14;51(1):83–100. doi: 10.1016/0022-2836(70)90272-x. [DOI] [PubMed] [Google Scholar]
  3. Björk G. R., Neidhardt F. C. Physiological and biochemical studies on the function of 5-methyluridine in the transfer ribonucleic acid of Escherichia coli. J Bacteriol. 1975 Oct;124(1):99–111. doi: 10.1128/jb.124.1.99-111.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Caboche M., Bachellerie J. P. RNA methylation and control of eukaryotic RNA biosynthesis. Effects of cycloleucine, a specific inhibitor of methylation, on ribosomal RNA maturation. Eur J Biochem. 1977 Mar 15;74(1):19–29. doi: 10.1111/j.1432-1033.1977.tb11362.x. [DOI] [PubMed] [Google Scholar]
  5. Friedman S. Alterations of tRNA modification in mammalian systems: the effect of ethionine. Nucleic Acids Res. 1977 Jun;4(6):1853–1871. doi: 10.1093/nar/4.6.1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Hobson A. C. The synthesis of S-adenosylmethionine by mutants with defects in S-adenosylmethionine synthetase. Mol Gen Genet. 1976 Feb 27;144(1):87–95. doi: 10.1007/BF00277310. [DOI] [PubMed] [Google Scholar]
  7. Johnson L., Hayashi H., Söll D. Isolation and properties of a transfer ribonucleic acid deficient in ribothymidine. Biochemistry. 1970 Jul 7;9(14):2823–2831. doi: 10.1021/bi00816a011. [DOI] [PubMed] [Google Scholar]
  8. Loening U. E. The fractionation of high-molecular-weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem J. 1967 Jan;102(1):251–257. doi: 10.1042/bj1020251. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Lombardini J. B., Coulter A. W., Talalay P. Analogues of methionine as substrates and inhibitors of the methionine adenosyltransferase reaction. Deductions concerning the conformation of methionine. Mol Pharmacol. 1970 Sep;6(5):481–499. [PubMed] [Google Scholar]
  10. Lu L. W., Chiang G. H., Medina D., Randerath K. Drug effects on nucleic acid modification. I. A specific effect of 5-azacytidine on mammalian transfer RNA methylation in vivo. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1094–1101. doi: 10.1016/0006-291x(76)90308-9. [DOI] [PubMed] [Google Scholar]
  11. Munns T. W., Sims H. F. Methylation and processing of transfer ribonucleic acid in mammalian and bacterial cells. J Biol Chem. 1975 Mar 25;250(6):2143–2149. [PubMed] [Google Scholar]
  12. Nau F. The methylation of tRNA. Biochimie. 1976;58(6):629–645. doi: 10.1016/s0300-9084(76)80387-2. [DOI] [PubMed] [Google Scholar]
  13. Ojala D., Attardi G. Expression of the mitochondrial genome in HeLa cells. XIX. Occurrence in mitochondria of polyadenylic acid sequences, "free" and covalently linked to mitochondrial DNA-coded RNA. J Mol Biol. 1974 Jan 15;82(2):151–174. doi: 10.1016/0022-2836(74)90338-6. [DOI] [PubMed] [Google Scholar]
  14. Perry R. P. Processing of RNA. Annu Rev Biochem. 1976;45:605–629. doi: 10.1146/annurev.bi.45.070176.003133. [DOI] [PubMed] [Google Scholar]
  15. Schibler U., Perry R. P. Characterization of the 5' termini of hn RNA in mouse L cells: implications for processing and cap formation. Cell. 1976 Sep;9(1):121–130. doi: 10.1016/0092-8674(76)90058-1. [DOI] [PubMed] [Google Scholar]
  16. Wildenauer D., Gross H. J. Methyldeficient mammalian 4s RNA: evidence for L-ethionine-induced inhibition of N6-dimethyladenosine synthesis in rat liver tRNA. Nucleic Acids Res. 1974 Feb;1(2):279–288. doi: 10.1093/nar/1.2.279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Zalta J., Zalta J. P., Simard R. Isolation of nucleoli. A method that combines high yield, structural integrity, and biochemical preservation. J Cell Biol. 1971 Nov;51(21):563–568. doi: 10.1083/jcb.51.2.563. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES