Abstract
The solubility of calf thymus chromatin and chromatin depleted of F1-histone has been examined under various conditions in sodium chloride. F1-depleted DNH was more soluble than native DNH at low concentrations but this difference became small at high concentrations (1mg/ml). Both exhibited minimum solubility in 0.15M -NaCl. The effect of pH and of maleylation of the mino acid side chains on the solubility implied that electrostatic interactions dominated the precipitation reaction. Urea had no effect on the solubility of either complex. N.m.r. studies showed that the chromatin behaved as a rigid complex at all salt concentrations less than 0.6 molar.
Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bradbury E. M., Carpenter B. G., Rattle H. W. Magnetic resonance studies of deoxyribonucleoprotein. Nature. 1973 Jan 12;241(5385):123–126. doi: 10.1038/241123a0. [DOI] [PubMed] [Google Scholar]
- Bradbury E. M., Rattle H. W. Simple computer-aided approach for the analyses of the nuclear-magnetic-resonance spectra of histones. Fractions F1, Fsa1, F2B, cleaved halves of F2B and F2B-DNA. Eur J Biochem. 1972 May 23;27(2):270–281. doi: 10.1111/j.1432-1033.1972.tb01836.x. [DOI] [PubMed] [Google Scholar]
- Bustin M. Nitration of the tyrosine in histone F1 in salt solutions and in F1-polyanion complexes. Biochim Biophys Acta. 1971 Nov 19;251(2):172–180. doi: 10.1016/0005-2795(71)90100-0. [DOI] [PubMed] [Google Scholar]
- Butler P. J., Harris J. I., Hartley B. S., Lebeman R. The use of maleic anhydride for the reversible blocking of amino groups in polypeptide chains. Biochem J. 1969 May;112(5):679–689. doi: 10.1042/bj1120679. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FREDERICQ E. Gel-forming properties of thymus nucleoproteins. Biochim Biophys Acta. 1962 Mar 5;55:300–309. doi: 10.1016/0006-3002(62)90785-0. [DOI] [PubMed] [Google Scholar]
- Henson P., Walker I. O. The partial dissociation of nucleohistone by salts. Circular dichroism and denaturation studies. Eur J Biochem. 1970 Nov;16(3):524–531. doi: 10.1111/j.1432-1033.1970.tb01112.x. [DOI] [PubMed] [Google Scholar]
- Henson P., Walker I. O. The partial dissociation of nucleohistone by salts. Hydrodynamic and denaturation studies. Eur J Biochem. 1970 Jun;14(2):345–350. doi: 10.1111/j.1432-1033.1970.tb00295.x. [DOI] [PubMed] [Google Scholar]
- Jensen R. H., Chalkley R. The physical state of nucleohistone under physiological ionic strength. The effect of interaction with free nucleic acids. Biochemistry. 1968 Dec;7(12):4388–4395. doi: 10.1021/bi00852a035. [DOI] [PubMed] [Google Scholar]
- Littau V. C., Burdick C. J., Allfrey V. G., Mirsky S. A. The role of histones in the maintenance of chromatin structure. Proc Natl Acad Sci U S A. 1965 Oct;54(4):1204–1212. doi: 10.1073/pnas.54.4.1204. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Panyim S., Chalkley R. High resolution acrylamide gel electrophoresis of histones. Arch Biochem Biophys. 1969 Mar;130(1):337–346. doi: 10.1016/0003-9861(69)90042-3. [DOI] [PubMed] [Google Scholar]
- Simpson R. T. Modification of chromatin with acetic anhydride. Biochemistry. 1971 Nov 23;10(24):4466–4470. doi: 10.1021/bi00800a018. [DOI] [PubMed] [Google Scholar]
- Smart J. E., Bonner J. Studies on the role of histones in the structure of chromatin. J Mol Biol. 1971 Jun 28;58(3):661–674. doi: 10.1016/0022-2836(71)90031-3. [DOI] [PubMed] [Google Scholar]
