Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1974 Feb;1(2):217–221. doi: 10.1093/nar/1.2.217

The role of the anticodon in the interaction between methionyl-tRNA synthetase and bacterial initiator tRNA?

CJ Bruton 1, BFC Clark 1
PMCID: PMC343340  PMID: 4607244

Abstract

Complementary and antiparallel oligonucleotides bind to exposed regions of the tRNA molecule. Aminoacylation in the presence of triplets has been used to determine the role of the anticodon in the interaction between methionyl-tRNA synthetase and initiator tRNA. ApUpG has no effect on the charging even when 70% of the tRNA is bound to the triplet, whereas in the presence of GpGpU which binds to the A-C-C sequence adjacent to the 3′ terminal adenosine that fraction of the tRNA which is bound to the triplet is completely unavailable for charging. Hence the anticodon is probably not involved in a primary interaction while the A-C-C-A-OH clearly is. This conclusion is supported by the failure of the isolated anticodon loop and stem oligonucleotides to inhibit the aminoacylation reaction.

Full text

PDF
217

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blanquet S., Iwatsubo M., Waller J. P. The mechanism of action of methionyl-tRNA synthetase from Escherichia coli. 1. Fluorescence studies on tRNAMet binding as a function of ligands, ions and pH. Eur J Biochem. 1973 Jul 2;36(1):213–226. doi: 10.1111/j.1432-1033.1973.tb02903.x. [DOI] [PubMed] [Google Scholar]
  2. Bruton C. J., Hartley B. S. Chemical studies on methionyl-tRNA synthetase from Escherichia coli. J Mol Biol. 1970 Sep 14;52(2):165–178. doi: 10.1016/0022-2836(70)90023-9. [DOI] [PubMed] [Google Scholar]
  3. Cramer F. Three-dimensional structure of tRNA. Prog Nucleic Acid Res Mol Biol. 1971;11:391–421. doi: 10.1016/s0079-6603(08)60333-5. [DOI] [PubMed] [Google Scholar]
  4. Doctor B. P., Wayman B. J., Cory S., Rudland P. S., Clark B. F. Studies on the Escherichia coli Methionine transfer ribonucleic acids. Eur J Biochem. 1969 Mar;8(1):93–100. doi: 10.1111/j.1432-1033.1969.tb00500.x. [DOI] [PubMed] [Google Scholar]
  5. Dube S. K. Evidence of "three point" attachment of tRNA to methionyl tRNA synthetase. Nat New Biol. 1973 May 23;243(125):103–105. [PubMed] [Google Scholar]
  6. Högenauer G. The stability of a codon transfer RNA complex. Eur J Biochem. 1970 Feb;12(3):527–532. doi: 10.1111/j.1432-1033.1970.tb00882.x. [DOI] [PubMed] [Google Scholar]
  7. Högenauer G., Turnowsky F., Unger F. M. Codon-anticodon interaction of methionine specific tRNAs. Biochem Biophys Res Commun. 1972 Mar 24;46(6):2100–2106. doi: 10.1016/0006-291x(72)90765-6. [DOI] [PubMed] [Google Scholar]
  8. Schulman L. H., Goddard J. P. Loss of methionine acceptor activity resulting from a base change in the anticodon of Escherichia coli formylmethionine transfer ribonucleic acid. J Biol Chem. 1973 Feb 25;248(4):1341–1345. [PubMed] [Google Scholar]
  9. Uhlenbeck O. C., Baller J., Doty P. Complementary oligonucleotide binding to the anticodon loop of fMet-transfer RNA. Nature. 1970 Feb 7;225(5232):508–510. doi: 10.1038/225508a0. [DOI] [PubMed] [Google Scholar]
  10. Uhlenbeck O. C. Complementary oligonucleotide binding to transfer RNA. J Mol Biol. 1972 Mar 14;65(1):25–41. doi: 10.1016/0022-2836(72)90489-5. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES