Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1974 Apr;1(4):549–558. doi: 10.1093/nar/1.4.549

Unpaired bases in superhelical DNA: kinetic evidence

RJ Jacob 1, J Lebowitz 1, MP Printz 2,a
PMCID: PMC343356  PMID: 10793739

Abstract

Kinetic analysis of the early, fast reaction of superhelical DNA with formaldehyde reveals that this region or regions is 56% “single strand like” in character. Hydrogen-tritium exchange studies coupled with other considerations show that this reaction is not due to a difference in conformational motility between form I and form II molecules, but is due to unpaired or weakly hydrogen bonded, localized region(s) of the form I allomorph of circular DNA.

Full text

PDF
549

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauer W., Vinograd J. Interaction of closed circular DNA with intercalative dyes. II. The free energy of superhelix formation in SV40 DNA. J Mol Biol. 1970 Feb 14;47(3):419–435. doi: 10.1016/0022-2836(70)90312-8. [DOI] [PubMed] [Google Scholar]
  2. Beerman T. A., Lebowitz J. Further analysis of the altered secondary structure of superhelical DNA. Sensitivity to methylmercuric hydroxide a chemical probe for unpaired bases. J Mol Biol. 1973 Sep 25;79(3):451–470. doi: 10.1016/0022-2836(73)90398-7. [DOI] [PubMed] [Google Scholar]
  3. Englander J. J., Von Hippel P. H. Slow exchange of the "outside" amino hydrogens of DNA. J Mol Biol. 1972 Jan 14;63(1):171–177. doi: 10.1016/0022-2836(72)90528-1. [DOI] [PubMed] [Google Scholar]
  4. Hanson C. V. A study of rapid hydrogen exchange in nucleic acids. J Mol Biol. 1971 Jun 28;58(3):847–863. [PubMed] [Google Scholar]
  5. Hvidt A., Nielsen S. O. Hydrogen exchange in proteins. Adv Protein Chem. 1966;21:287–386. doi: 10.1016/s0065-3233(08)60129-1. [DOI] [PubMed] [Google Scholar]
  6. Kato A. C., Bartok K., Fraser M. J., Denhardt D. T. Sensitivity of superhelical DNA to a single-strand specific endonuclease. Biochim Biophys Acta. 1973 Apr 21;308(7):68–78. doi: 10.1016/0005-2787(73)90123-8. [DOI] [PubMed] [Google Scholar]
  7. McConnell B., von Hippel P. H. Hydrogen exchange as a probe of the dynamic structure of DNA. I. General acid-base catalysis. J Mol Biol. 1970 Jun 14;50(2):297–316. doi: 10.1016/0022-2836(70)90194-4. [DOI] [PubMed] [Google Scholar]
  8. McConnell B., von Hippel P. H. Hydrogen exchange as a probe of the dynamic structure of DNA. II. Effects of base composition and destabilizing salts. J Mol Biol. 1970 Jun 14;50(2):317–332. doi: 10.1016/0022-2836(70)90195-6. [DOI] [PubMed] [Google Scholar]
  9. Printz M. P. Tritium-hydrogen exchange studies of polynucleotides. Double-stranded polyriboadenylic acid. Biochemistry. 1970 Jul 21;9(15):3077–3087. doi: 10.1021/bi00817a022. [DOI] [PubMed] [Google Scholar]
  10. Printz M. P., von Hippel P. H. On the kinetics of hydrogen exchange in deoxyribonucleic acid. pH and salt effects. Biochemistry. 1968 Sep;7(9):3194–3206. doi: 10.1021/bi00849a023. [DOI] [PubMed] [Google Scholar]
  11. Rosenfeld A., Stevens C. L., Printz M. P. Studies on the secondary structure of phenylalanyl transfer ribonucleic acid. Biochemistry. 1970 Dec 8;9(25):4971–4980. doi: 10.1021/bi00827a022. [DOI] [PubMed] [Google Scholar]
  12. Utiyama H., Doty P. Kinetic studies of denaturation and reaction with formaldehyde on polydeoxyribonucleotides. Biochemistry. 1971 Mar 30;10(7):1254–1264. doi: 10.1021/bi00783a024. [DOI] [PubMed] [Google Scholar]
  13. Von Hippel P. H., Wong K. Y. Dynamic aspects of native DNA structure: kinetics of the formaldehyde reaction with calf thymus DNA. J Mol Biol. 1971 Nov 14;61(3):587–613. doi: 10.1016/0022-2836(71)90066-0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES