Skip to main content
Nucleic Acids Research logoLink to Nucleic Acids Research
. 1974 May;1(5):673–688. doi: 10.1093/nar/1.5.673

Mercury(II) binding to s4U in E.coli tRNAVal

Helen R Sunshine 1, Stephen J Lippard 1
PMCID: PMC343368  PMID: 10793748

Abstract

The accessibility of the s4U base in native tRNAVal from E.coli was monitored by studying the binding of various mercurials. The relative binding order HgBr2[unk]HgCl2≫CH3HgOAc[unk]CH3HgCl[unk]PCMB parallels approximately the steric requirements of linear HgX2 or RHgX compounds for SN2 displacement by sulfur, although other factors are operative. Para-chloromercuri-benzoate (PCMB) does not bind the thiolated nucleotide unless the tertiary structure of the tRNA is opened up by removal of Mg2+ ions and heating to 40°. Under these conditions, equilibrium dialysis measurements using 14C-labeled PCMB showed one binding site (n = 0.93) with an association constant, K1, of 9 × 104M−1.

Full text

PDF
673

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cole P. E., Yang S. K., Crothers D. M. Conformational changes of transfer ribonucleic acid. Equilibrium phase diagrams. Biochemistry. 1972 Nov 7;11(23):4358–4368. doi: 10.1021/bi00773a024. [DOI] [PubMed] [Google Scholar]
  2. Fresco J. R., Adams A., Ascione R., Henley D., Lindahl T. Tertiary structure in transfer ribonucleic acids. Cold Spring Harb Symp Quant Biol. 1966;31:527–537. doi: 10.1101/sqb.1966.031.01.068. [DOI] [PubMed] [Google Scholar]
  3. Gruenwedel D. W., Davidson N. Complexing and denaturation of DNA by methylmercuric hydroxide. I. Spectrophotometric studies. J Mol Biol. 1966 Oct 28;21(1):129–144. doi: 10.1016/0022-2836(66)90084-2. [DOI] [PubMed] [Google Scholar]
  4. HUGHES T. R., KLOTZ I. M. Analysis of metal-protein complexes. Methods Biochem Anal. 1956;3:265–299. doi: 10.1002/9780470110195.ch9. [DOI] [PubMed] [Google Scholar]
  5. Heitner H. I., Lippard S. J., Sunshine H. R. Metal binding by thionucleosides. J Am Chem Soc. 1972 Dec 13;94(25):8936–8937. doi: 10.1021/ja00780a066. [DOI] [PubMed] [Google Scholar]
  6. Jones A. S., Walker R. T., Youngs V. Preparation of a stable mercury derivative of tyrosine transfer RNA. Biochim Biophys Acta. 1973 Mar 19;299(2):293–299. doi: 10.1016/0005-2787(73)90352-3. [DOI] [PubMed] [Google Scholar]
  7. Kim S. H., Quigley G. J., Suddath F. L., McPherson A., Sneden D., Kim J. J., Weinzierl J., Rich A. Three-dimensional structure of yeast phenylalanine transfer RNA: folding of the polynucleotide chain. Science. 1973 Jan 19;179(4070):285–288. doi: 10.1126/science.179.4070.285. [DOI] [PubMed] [Google Scholar]
  8. Lipsett M. N., Doctor B. P. Studies on tyrosine transfer ribonucleic acid, a sulfur-rich species from Escherichia coli. J Biol Chem. 1967 Sep 25;242(18):4072–4077. [PubMed] [Google Scholar]
  9. Pal B. C., Shugart L. R., Isham K. R., Stulberg M. P. Modification of 4-thiouridine and phenylalanine transfer RNA with parachlormercuribenzoate. Arch Biochem Biophys. 1972 May;150(1):86–90. doi: 10.1016/0003-9861(72)90013-6. [DOI] [PubMed] [Google Scholar]
  10. Scheit K. H., Faerber P. The interactions of 2-thiopyrimidine bases with hydroxymercurybenzene sulfonate. Eur J Biochem. 1973 Mar 15;33(3):545–550. doi: 10.1111/j.1432-1033.1973.tb02714.x. [DOI] [PubMed] [Google Scholar]
  11. Willick G. E., Kay C. M. Magnesium-induced conformational change in transfer ribonucleic acid as measured by circular dichroism. Biochemistry. 1971 Jun 8;10(12):2216–2222. doi: 10.1021/bi00788a005. [DOI] [PubMed] [Google Scholar]
  12. Yaniv M., Barrell B. G. Sequence relationship of three valine acceptor tRNAs from Escherichia coli. Nat New Biol. 1971 Sep 22;233(38):113–114. doi: 10.1038/newbio233113a0. [DOI] [PubMed] [Google Scholar]

Articles from Nucleic Acids Research are provided here courtesy of Oxford University Press

RESOURCES