Abstract
The flexibility of pyrimidine nucleosides has been investigated by measuring their circular dichroism in hydroalcoholic solutions over a large temperature range (-100° to +40°C). It was observed that ß-Uridine (Urd) and ß-Cytidine (Cyd) showed a decrease of the main dichroic band of about 40 percent, while sterically hindered nucleosides (αUrd, ara-Uracile, 02-2′ anhy-dro-Urd, 2′3′-0-isopropylidene-Urd) showed only small decreases. It is concluded that the flexibility of the glycosidic linkage in conjunction with the pseudo-rotation of the sugar residue is responsible for these changes; the thermodynamic values which can be deduced from these decreases are compatible with an oscillatory motion around the glycosidic bond, but exclude anti-syn transformations in pyrimidine nucleosides.
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Altona C., Sundaralingam M. Conformational analysis of the sugar ring in nucleosides and nucleotides. A new description using the concept of pseudorotation. J Am Chem Soc. 1972 Nov 15;94(23):8205–8212. doi: 10.1021/ja00778a043. [DOI] [PubMed] [Google Scholar]
- Formoso C. Circular dichroism study of the effects of magnesium perchlorate and temperature on the solution conformation of uridine 5'-monophosphate, uridine 3'-monophosphate, uridine, and uridylyl-(3' leads to 5')-uridine. Biochemistry. 1972 Oct 24;11(22):4031–4036. doi: 10.1021/bi00772a004. [DOI] [PubMed] [Google Scholar]
- Glaubiger D., Lloyd D. A., Tinoco I., Jr Temperature-dependent optical properties of a torsional oscillator model for dinucleoside phosphates. Biopolymers. 1968;6(3):409–414. doi: 10.1002/bip.1968.360060312. [DOI] [PubMed] [Google Scholar]
- Hart P. A., Davis J. P. Pyrimidine nucleoside conformational analysis. Nuclear Overhauser effect and circular dichroism correlations. J Am Chem Soc. 1971 Feb 10;93(3):753–760. doi: 10.1021/ja00732a033. [DOI] [PubMed] [Google Scholar]
- Hruska F. E., Grey A. A., Smith I. C. Conformational analysis of a minor nucleoside from nuclear magnetic resonance data. Pseudouridine. J Am Chem Soc. 1970 Jan 14;92(1):214–215. doi: 10.1021/ja00704a044. [DOI] [PubMed] [Google Scholar]
- Miles D. W., Robins M. J., Robins R. K., Winkley M. W., Eyring H. Circular dichroism of nucleoside derivatives. IV. Uracil derivatives. J Am Chem Soc. 1969 Feb 12;91(4):824–831. doi: 10.1021/ja01032a005. [DOI] [PubMed] [Google Scholar]
- Schirmer R. E., Davis J. P., Noggle J. H., Hart P. A. Conformational analysis of nucleosides in solution by quantitative application of the nuclear Overhauser effect. J Am Chem Soc. 1972 Apr 19;94(8):2561–2572. doi: 10.1021/ja00763a001. [DOI] [PubMed] [Google Scholar]
- Schleich T., Blackburn B. J., Lapper R. D., Smith I. C. A nuclear magnetic resonance study of the influence of aqueous sodium perchlorate and temperature on the solution conformations of uracil nucleosides and nucleotides. Biochemistry. 1972 Jan 18;11(2):137–145. doi: 10.1021/bi00752a001. [DOI] [PubMed] [Google Scholar]
- Son T. D., Guschlbauer W., Guéron M. Flexibility and conformations of guanosine monophosphates by the Overhauser effect. J Am Chem Soc. 1972 Nov 1;94(22):7903–7911. doi: 10.1021/ja00777a038. [DOI] [PubMed] [Google Scholar]
- Voelter W., Records R., Bunnenberg E., Djerassi C. Magnetic circular dichroism studies. VI. Investigation of some purines, pyrimidines, and nucleosides. J Am Chem Soc. 1968 Oct 23;90(22):6163–6170. doi: 10.1021/ja01024a039. [DOI] [PubMed] [Google Scholar]
- Wilson H. R., Rahman A. Nucleoside conformation and non-bonded interactions. J Mol Biol. 1971 Feb 28;56(1):129–142. doi: 10.1016/0022-2836(71)90089-1. [DOI] [PubMed] [Google Scholar]
